An Introduction to Finite Element Modelling with ONELAB

C. Geuzaine, R. Sabariego, J. Gyselinck, F. Henrotte, E. Kuci

BEST Summer Course - University of Liège, Belgium
August 22-26 2016

About modern product development

Development cycle

How is testing performed?
Physical vs. Numerical

Test of a car - The physical crash test

Costly (vehicle 250k€, dummy 50-500k€) and time-consuming

Test of a car - Numerical simulations

Test of a car - Numerical simulations

Test of a car - Numerical simulations

Test of a car - Numerical simulations

Test of a car - Numerical simulations

- Nowadays, typically more than 100 numerical tests are performed for 1 physical test

Thanks to the finite element method
(and related numerical techniques)

- Both testing strategies are complementary

Finite element method - Domains of application

Aerodynamics

Plane engine flow

Finite element method - Domains of application

Finite element method - Domains of application

Weather forecasting

Geophysical modelling

Finite element method - Domains of application

Biomedical engineering

Health

Finite element method - Domains of application

Steps of a finite element analysis

Steps of a finite element analysis

- Many commercial software packages are available, that perform all the steps:
- ANSYS, Abaqus/CATIA/SIMULIA, Siemens NX/Nastran/SAMCEF, Altair, ADINA, COMSOL, LS-DYNA, ...
- Several open source packages are also available, but most only implement one step:
- Code_Aster, deal.II, CalculiX, Elmer, FEniCS, FreeFem++, OpenFOAM, GetDP, Gmsh, Paraview, ...
- This week: introduction to finite element modelling with ONELAB (http://onelab.info)

ONELAB

- Open source, lightweight interface to finite element software
- The default ONELAB software bundle contains
- the mesh generator Gmsh (http://gmsh.info)
- the finite element solver GetDP (http://getdp.info)
- Many other codes (free or not) can be easily interfaced as well
- Download the software bundle now for Windows, Linux, Mac, Android or iOS from http://onelab.info

Steps of a finite element analysis with ONELAB

ONELAB

This week - Objective of the course

As an introduction to finite element modelling, we would like you to

- understand,
- model,
- simulate, and
- optimize
a practical device with ONELAB, and learn the basics of the finite element method along the way

The device we chose is a Micro Electro-Mechanical System (MEMS): a Xylophone Bar Magnetometer (XBM)

This week - Objective of the course

Courtesy

Xylophone Bar Magnetometer (XBM)
 Micro Electro-Mechanical System (MEMS)

This week - Objective of the course

- When an alternating current flows through it, the magnetometer starts to vibrate if it is placed in a magnetic field; the amplitude of the vibration can be used to measure the magnetic field
- To increase sensitivity, the frequency of the current is tuned to excite a resonant mode of the xylophone-type structure
- Modelling should take into account the multiphysics coupling (electromagnetic, mechanical and thermal) and multiple time states (static, transient, harmonic, eigenmodes)

This week - Schedule

- Monday 10h00-12h00 \& 14h00-17h00
- Basics of the finite element method
- Tuesday 10h00-12h00 \& 14h00-17h30
- Electromagnetics and heat transfer
- Wednesday $10 h 00-12 h 00 \& 14 h 00-17 h 00$
- Mechanics
- Thursday $10 h 00-12 h 00 \& 14 h 00-17 h 30$
- Optimization
- Friday 10h00-13h00
- Siemens LMS Samtech visit

Geometry construction

Geometry construction with Gmsh

- Gmsh uses a Boundary REPresentation (BREP) approach to describe geometrical models:
- volumes are bounded by surfaces
- surfaces are bounded by curves
- curves are bounded by points
- Models can be
- built interactively using the graphical user interface (which logs all commands in a ".geo" file)
- scripted directly in ".geo" files
- imported from external CAD packages

Geometry construction with Gmsh

- To launch Gmsh, double-click on the icon

Geometry construction with Gmsh

- To open an existing geometry, use "File->Open" and select "models/magnetometer/magnetometer.geo"

Geometry construction with Gmsh

- Model parameters are on the left, below the "Geometry", "Mesh" and "Solver" modules

Geometry construction with Gmsh

- To change a parameter, simply enter a value or click and slide the mouse across an input field
- In the graphic window:
- The left mouse button rotates the model and selects objects
- The middle mouse button (or the mouse wheel, or a two finger zoom gesture) zooms in or out
- The right mouse button pans (translates)
- For two- or single-button manipulation:
- Middle click = Shift+left click
- Right click = Alt+left click

Geometry construction with Gmsh

- Common options can be accessed by double-clicking in the graphic window

Geometry construction with Gmsh

- Preset viewports and rotations can also be accessed in the status bar

Geometry construction with Gmsh

- A video tutorial showing how to create geometries interactively is available here:
http://youtu.be/nkuawZkiu1w

Geometry construction with Gmsh

- Let us create a magnetometer model from scratch: select "File->New" and choose a name ("new.geo")

Geometry construction with Gmsh

- Select "Modules->Geometry->Elementary entities-> Add->Point" to create a point

Geometry construction with Gmsh

- Enter coordinates ($0,0,0$) and press "Add" (or choose the position with the mouse and press " e ")

Geometry construction with Gmsh

- Press " q " when you are done; placing the mouse on the point will show its attributes

Geometry construction with Gmsh

If anything goes wrong, don't worry:

- Select "Modules->Geometry->Remove last script command"
- This removes the last command that was added to the script "new.geo" and reloads the updated script
- Or select "Modules->Geometry->Edit script"
- This opens the script in a text editor, where you can remove the erroneous commands or fine-tune the commands that were inserted
- Then save the file, close the text editor and select Select "Modules->Geometry->Reload"

Geometry construction with Gmsh

- Define some variables by selecting "Add->Parameter": $w=50 e-6, w 2=2 e-6, l=500 e-6, e=2 e-6$

Geometry construction with Gmsh

- Create a line of length "w" by extruding the point with "Translate->Extrude point"; then press "e"

Geometry construction with Gmsh

- This is the left side of the magnetometer; Create a surface of width " w " with "Translate->Extrude line"

Geometry construction with Gmsh

- Proceed along axis " X " with successive line extrusions of length "w2", "I", "w2" and "w"

Geometry construction with Gmsh

- Create the "legs" by extruding by "w" and "-w" along axis " γ "

Geometry construction with Gmsh

- Create the volume by extruding all the surfaces ("Ctrl+left click" to select a region) along the " Z " axis

Geometry construction with Gmsh

- Note that the parameters are "live": you can change them in the left menu and see the result

Geometry construction with Gmsh

- Select "Modules->Geometry->Edit script" to see the transcription of our work so far

Geometry construction with Gmsh

- You can edit this file, save it and press "Modules->Geometry->Reload script" to reload it

Geometry construction with Gmsh

- The main commands we have used are
- Point(1) $=\{0,0,0,1.0\} ;$
- This creates a point with identification number " 1 ", at Cartesian coordinates " $(0,0,0)$ " and with a target mesh size of " 1.0 " (the size of the finite elements that will be created close to this point)
- w = DefineNumber[50e-6, Name "Parameters/w"];
- This creates a variable " w " with default value " $50 \mathrm{e}-6$ " and ONELAB name "Parameters/w". ONELAB names are provided as paths, which correspond to the tree hierarchy in the graphical user interface.

Geometry construction with Gmsh

- Extrude \{0, w, 0\} \{ Point\{1\}; \}
- This extrudes the point " 1 " and creates a line of length " w " in along the " γ " axis
- Extrude \{w2, 0, 0\} \{ Line\{2\}; \}
- This extrudes the line " 2 " by " $w 2$ " along the " X " axis
- Extrude \{0, 0, e\} \{ Surface\{5, 25, 9, 29, ...\};\}
- This extrudes the listed surfaces along the " Z " axis to create a volume

Geometry construction with Gmsh

- The geometry is almost ready to be meshed and used for computing a solution: we just need to group elements in "physical groups"
- We will need one physical group for each region that must be distinguished in the solution process: for example, for each material and for each boundary condition
- For the magnetometer, we define a single "physical volume" (single material) grouping all the elementary volumes and two "physical surfaces" - one for each electrode, where the structure is also clamped

Geometry construction with Gmsh

Left electrodes (clamped)

Geometry construction with Gmsh

- Click on "Physical groups->Add->Volume", select all volumes, choose a name and press "e"

Geometry construction with Gmsh

- Click on "Physical groups->Add->Surface", select the electrodes, choose names and press "e"

Geometry construction with Gmsh

- You can inspect all entities (elementary and physical) by selecting Tools->Visibility

Geometry construction with Gmsh

- To reset all ONELAB variables to their default value, select "Reset database" in the gear menu

Geometry construction with Gmsh

- Many more commands exist in Gmsh: examine in more detail the first tutorials provided in the distribution (in the "tutorial" directory):

- The complete documentation is available on http://gmsh.info

Mesh generation

Mesh generation with Gmsh

- To generate a finite element mesh, select "Modules->Mesh->3D"

Mesh generation with Gmsh

- The resulting mesh is
- as coarse as possible (we set a target mesh size of " 1.0 " on point 1, for a structure of about 6e-4; notice that there are no units at this stage)
- made of tetrahedra in the
volume, triangles on surfaces and line segments on curves (select "Tools->Statistics" to see the details)

Mesh generation with Gmsh

- Double-click in the graphic window and set the "Global mesh size factor" to $1 \mathrm{e}-2$

Mesh generation with Gmsh

- Press " 1 D ", " 2 D " and " 3 D " in "Modules->Mesh" to remesh the curves, surfaces and volumes

Mesh generation with Gmsh

- For a thin structure like the magnetometer, a regular ("structured") mesh would be more suitable
- Edit the "new.geo" file and modify the Extrude commands by adding "Layers" options to specify explicitly the number of layers of elements to be generated in the extrusion

```
new.geo - Notepad
File Edit Format View Help
Extrude {0, W,0} {
//+
Extrude {w, 0, 0} {
    Line{1}; Layers{n1};
}//+
Extrude {w2,0, 0} {
    Line{2}; Layers{n2};
///+
Extrude {1, 0, 0} {
}}/1
Extrude {w2, 0, 0} {
    Line{10}; Layers{n2};
}//+
Extrude {w, 0, 0} {
    Line{14}; Layers{n1};
}//+
Extrude {0, w, 0} { 
}//+
Extrude {0, -w, 0} {
Extrude {0, -w, 0} {
}//+
Extrude {0, -w, 0} {
Extrude {0, -w, 0} {
}/1+
Extrude {0, w, O} {
    Line{16}; Layers{n1};
}
Extrude {0, 0, e} {
    Extrude {0, 0, e} {
}//+
```


Mesh generation with Gmsh

- Adding "Recombine;" will recombine all triangles into quadrangles and all tetrahedra into hexahedra

Mesh generation with Gmsh

The final "new.geo" script after removing the comments:

```
Point(1) = {0, 0, 0, 1.0};
w = DefineNumber[ 50e-6, Name "Parameters/w" ];
w2 = DefineNumber[ 2e-6, Name "Parameters/w2" ];
l = DefineNumber[ 500e-6, Name "Parameters/l" ];
e = DefineNumber[ 2e-6, Name "Parameters/e" ];
n1 = 5; n2 = 2; n3 = 50;
Extrude {0, w, 0} { Point{1}; Layers{n1};}
Extrude {w, 0, 0} { Line{1}; Layers{n1}; Recombine;}
Extrude {w2, 0, 0} { Line{2}; Layers{n2}; Recombine;}
Extrude {1, 0, 0} { Line{6}; Layers{n3}; Recombine;}
Extrude {w2, 0, 0} { Line{10}; Layers{n2}; Recombine;}
Extrude {w, 0, 0} { Line{14}; Layers{n1}; Recombine;}
Extrude {0, w, 0} { Line{8}; Layers{n1}; Recombine;}
Extrude {0, -w, 0} { Line{7}; Layers{n1}; Recombine;}
Extrude {0, -w, 0} { Line{15}; Layers{n1}; Recombine;}
Extrude {0, w, 0} { Line{16}; Layers{n1}; Recombine;}
Extrude {0, 0, e} { Surface{5, 25, 9, 29, 13, 37, 17, 33, 21}; Layers{n2};
    Recombine;}
Physical Volume("Magnetometer") = {2, 1, 3, 4, 5, 6, 7, 9, 8};
Physical Surface("Left Electrode") = {76, 120};
Physical Surface("Right Electrode") = {164, 208};
```


Mesh generation with Gmsh

- To save the mesh to disk in the default mesh format, select "Modules->Mesh->Save"
- The "File->Save As" menu has many more options to save the mesh in various formats suitable for different solvers, or to export images. Simply choosing a file name with the right extension (e.g. "image.png" for a PNG image) will select the appropriate file format
- You can mesh without the graphical user interface, by opening a terminal and typing: "gmsh new.geo -3"

Solution computation

GetDP solver

- GetDP is a rather general finite element solver, whose main feature is the closeness between the input data defining discrete problems (written in plain text ".pro" files) and the symbolic mathematical expressions of these problems
- ONELAB uses GetDP both
- as a "black-box" solver, if a template problem definition is available
- as a fully customizable solver, when the physical problem definition is written from scratch

GetDP solver - Using a template

- If a template for the given physical problem already exists, simply merge it along with the geometrical description with "File->Merge"
- Simple templates are provided in the "templates" directory

GetDP solver - Using a template

- "File->Merge" the "Electrostatics.pro" template with the magnetometer geometry

GetDP solver - Using a template

- Materials and boundary conditions can be specified interactively on the available physical groups

GetDP solver - Using a template

- Once the parameters are chosen, press "Run" to compute the solution

GetDP solver - Using a template

- We will see later how to exploit the results in the post-processing module

GetDP solver - Constructing your own model

- In order to construct your own physical model, you need to start with the mathematical description of the physical problem as partial differential equations
- The finite element method allows to solve such partial differential equations in so-called "weak form", after discretization on a mesh
- The next slides provide a short summary of the general approach - you will study details for electromagnetics, heat transfer and mechanics on Tuesday and Wednesday

GetDP solver - Constructing your own model

- Let us assume that the physical problem we want to solve is modelled by the following partial differential equation on the open set $\Omega \subset R^{3}$, with homogeneous boundary conditions on the boundary $\partial \Omega$:

$$
\begin{aligned}
\operatorname{div} \alpha(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x}) & =f(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega \\
u(\boldsymbol{x}) & =0, \quad \boldsymbol{x} \in \partial \Omega
\end{aligned}
$$

- Given $\alpha(\boldsymbol{x})>0$ and $f(\boldsymbol{x})$, we want to find $u(\boldsymbol{x})$ everywhere in Ω

GetDP solver - Constructing your own model

- For general $\Omega, \alpha(\boldsymbol{x})$ and $f(\boldsymbol{x})$ there is no closed form solution for $u(\boldsymbol{x})$
- The main idea behind the finite element method is to look for the solution $u(x)$ such that the partial differential equation is satisfied when tested against well-chosen test functions
- Mathematically, we look for $u(\boldsymbol{x})$, with $u(\boldsymbol{x})=0$ on $\partial \Omega$, such that
$\int_{\Omega}(\operatorname{div} \alpha(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x})) u^{\prime}(\boldsymbol{x}) d \Omega=\int_{\Omega} f(\boldsymbol{x}) u^{\prime}(\boldsymbol{x}) d \Omega$ holds for all appropriately chosen functions $u^{\prime}(\boldsymbol{x})$

GetDP solver - Constructing your own model

- The differential operators div and grad should be understood in the distributional sense (think about $\alpha(\boldsymbol{x})$ being discontinuous)
- Integrating by parts, the problem becomes: find $u(\boldsymbol{x})$ such that
$-\int_{\Omega} \alpha(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x}) \cdot \operatorname{grad} u^{\prime}(\boldsymbol{x}) d \Omega=\int_{\Omega} f(\boldsymbol{x}) u^{\prime}(\boldsymbol{x}) d \Omega$ holds for all $u^{\prime}(\boldsymbol{x})$
- The finite element methods consists in approximating $u(\boldsymbol{x})$ by $u_{h}(\boldsymbol{x})$ in a finite dimensional function space

GetDP solver - Constructing your own model

- For classical finite elements, this means taking $u_{h}(\boldsymbol{x})$ and the test functions in

$$
F^{0}(\Omega)=\operatorname{span}\left\{s_{1}(\boldsymbol{x}), s_{2}(\boldsymbol{x}), \ldots s_{N}(\boldsymbol{x})\right\}
$$

where the basis functions $s_{i}(\boldsymbol{x}), i=1, \ldots, N$ are associated with the N vertices of the mesh

- Lowest order basis functions are linear on line, triangle and tetrahedral elements, bilinear on quadrangles and trilinear on hexahedra; their value goes from 1 at the associated vertex, to 0 on the other vertices

GetDP solver - Constructing your own model

GetDP solver - Constructing your own model

GetDP solver - Constructing your own model

- Injecting $u(\boldsymbol{x}) \approx u_{h}(\boldsymbol{x})=\sum_{i=1}^{N} u_{i} s_{i}(\boldsymbol{x})$ in the weak form $-\int_{\Omega} \alpha(\boldsymbol{x}) \operatorname{grad} u(\boldsymbol{x}) \cdot \operatorname{grad} u^{\prime}(\boldsymbol{x}) d \Omega=\int_{\Omega} f(\boldsymbol{x}) u^{\prime}(\boldsymbol{x}) d \Omega$ and taking for $u^{\prime}(\boldsymbol{x}): s_{i}(\boldsymbol{x}), i=1, \ldots, N$ leads to a system of linear equations, for $j=1, \ldots, N$:
$-\sum_{i=1}^{N} u_{i} \int_{\Omega} \alpha(\boldsymbol{x}) \operatorname{grad} s_{i}(\boldsymbol{x}) \cdot \operatorname{grad} s_{j}(\boldsymbol{x}) d \Omega=\int_{\Omega} f(\boldsymbol{x}) s_{j}(\boldsymbol{x}) d \Omega$

GetDP solver - Constructing your own model

- In matrix form, we have

This is the system solved by the computer, e.g. using LU factorization
- The matrix A is very sparse, since basis functions associated with distant nodes have disjoint support
- leading to many zero integrals

GetDP solver - Constructing your own model

- The implementation in GetDP ".pro" files reflects this problem definition structure:
- Group $\{$ defines the domains (i.e. Ω and $\partial \Omega$)
- Function $\{$ \} defines the functions (i.e. $\alpha(\boldsymbol{x})$ and $f(\boldsymbol{x})$)
- FunctionSpace\{ \} and Constraint $\{$ \} define the function space (i.e. $F^{0}(\Omega)$) and associated constraints ($u(\boldsymbol{x})=0$ on $\partial \Omega$)
- Formulation\{ \} defines the weak form

GetDP solver - Constructing your own model

- Additional objects define
- Integration methods: Integration\{ \}
- Geometrical transformation methods: Jacobian\{ \}
- Resolution steps: Resolution\{ \}
- Post-processing specifications: PostProcessing\{ \} and PostOperation\{ \}

GetDP solver - Constructing your own model

10 objects Top: particular to a particular test-case Bottom: generic for a physical/mathematical model

GetDP solver - Constructing your own model

1. Group

- Regions (physical groups)
- "Functions" on regions (nodes, edges, edges of tree, ...)

```
Group{
    Air = Region[1]; //simple group (linked with the mesh)
    Core = Region[2];
    Gamma = Region[{3,4}];
    Omega = Region[{Air, Core}]; //combining groups
    nodes = NodesOf[Omega]; //function group
    edgesOfSpanningTree = EdgesOfTreeIn[Omega, StartinOn Gamma];
}
```


GetDP solver - Constructing your own model

2. Function

- Piecewise definition (on groups)
- Space/time dependent, with arguments
- For physical characteristics, sources, contraints, ...

```
Function{
    f = 50; //constants
    muO = 4.e-7 * Pi;
    mu[Air] = mu0; //piecewise definition
    mu[Core] = mu0 + 1/(100 + 100 * ($1)^6); //argument ($1)
    TimeFct[] = Cos[2*Pi*f*$Time] * Exp[-$Time/0.01]; //current value
}
```


GetDP solver - Constructing your own model

3. FunctionSpace

- List of basis functions associated with nodes, edges, faces or volumes, of various orders
- Local or nonlocal (fluxes, circulations, ...)

```
FunctionSpace{
    { Name H1; Type Form0; //discrete function space for H1_h
        BasisFunction {
            { Name wi; NameOfCoef fi; Function BF_Node; //''P1 finite elements')
                Support Omega; Entity NodesOf[All]; }
        }
        Constraint {
            { NameOfCoef fi; EntityType NodesOf; NameOfConstraint Dirichlet; }
        }
    }
}
```


GetDP solver - Constructing your own model

3. FunctionSpace

```
//higher-order version
FunctionSpace{
    { Name H1; Type Form0;
        BasisFunction {
            { Name wi; NameOfCoef fi; Function BF_Node; //order 1
                Support Omega; Entity NodesOf[All]; }
            { Name wi2; NameOfCoef fi2; Function BF_Node_2E; //order 2
                Support Omega; Entity EdgesOf [All]; }
        }
        Constraint {
            { NameOfCoef fi; EntityType NodesOf; NameOfConstraint Dirichlet; }
            { NameOfCoef fi2; EntityType EdgesOf; NameOfConstraint Dirichlet2; }
        }
    }
}
```


GetDP solver - Constructing your own model

4. Constraint

- Constraints on FunctionSpace coefficients (boundary, periodicity, initial and gauge conditions, ...)
- Topology of circuits with lumped elements

```
Constraint{
    { Name Dirichlet; Type Assign; //boundary conditions
        Case {
            { Region Surface0; Value 0; }
            { Region Surface1; Value 1; }
        }
    }
}
```


GetDP solver - Constructing your own model

4. Constraint

```
Constraint{
    //time-dependent or harmonic constraints
    { Name Current; Type Assign;
        Case {
            { Region CurrentLoop; Value 1000; TimeFunction TimeFct[]; }
        }
    }
    //network relations between global quantities
    { Name ElectricalCircuit; Type Network;
        Case Circuit {
            { Region E1; Branch {1,2}; }
            { Region R1; Branch {1,3}; }
            { Region L1; Branch {3,2}; }
            { Region C1; Branch {1,2}; }
        }
    }
}
```


GetDP solver - Constructing your own model

5. Formulation

- Symbolic equation builder (bilinear and linear forms, term by term) involving local and nonlocal quantities

GetDP solver - Constructing your own model

6. Jacobian

- Mapping fom reference to solution space
- Geometrical transformations (axisymmetry, infinite domains, ...)

```
Jacobian{
    { Name Jac1;
        Case { //piecewise defined on groups
            { Region OmegaInf; Jacobian VolSphShell{Rint, Rext}; }
            { Region OmegaAxi; Jacobian VolAxi; }
            { Region All; Jacobian Vol; }
        }
    }
}
```


GetDP solver - Constructing your own model

7. Integration

- Numerical and analytic integration methods
- Criterion-based selection

```
Integration {
    { Name Int1; Criterion Test[];
        Case {
            { Type Gauss;
                Case {
                    { GeoElement Triangle; NumberOfPoints 3; }
                    { GeoElement Tetrahedron; NumberOfPoints 3; }
                }
            }
            { Type Analytic; }
        }
    }
}
```


GetDP solver - Constructing your own model

8. Resolution

- Sequence of solving operations (system generation and solution, time-stepping and nonlinear iterations, multiformulation coupling, ...)

```
Resolution{
    { Name Parabolic;
    System {
        { Name A; NameOfFormulation Parabolic; }
        }
        Operation{
            InitSolution[A];
            TimeLoopTheta[tmin,tmax,dt,1]{
                Generate[A]; Solve[A]; If [Save[]]{ SaveSolution[A] ; }
            }
    }
    }
```


GetDP solver - Constructing your own model

9. PostProcessing

- Piecewise definition of quantities of interest
- Local or integral evaluation

```
PostProcessing {
    { Name magfields; NameOfFormulation Dynamic;
        Quantity {
            { Name b;
            Value {
                        Local { [ -mu[] * {Grad phi} ]; In OmegaCC; }
                        Local { [ mu[] * h ]; In OmegaC; }
                }
        }
    }
}
```


GetDP solver - Constructing your own model

10. PostOperation

- Evaluation and export of post-processing quantities (maps, cuts, ...)

```
PostOperation {
    { Name Map_b; NameOfPostProcessing magfields;
        Operation {
            Print[ b, OnElementsOf Omega, File "b.pos", Format Gmsh ];
            Print[ b, OnLine {{0,0,0}{1,0,0}} {100}, File "b.txt" ];
        }
    }
}
```


GetDP solver - Constructing your own model

For our toy problem, the complete "new.pro" file is:

```
Group{
    Omega = Region[1]; Gamma0 = Region[{2,3}];
}
Function{
    alpha[Omega] = 1; f[Omega] = -1;
}
Jacobian {
    { Name Vol; Case { { Region All; Jacobian Vol; } } }
}
Integration {
    { Name I1; Case {
        { Type Gauss; Case { { GeoElement Hexahedron; NumberOfPoints 6; } } } }
    }
}
Constraint {
    { Name Dirichlet; Case { { Region Gamma0; Value 0; } } }
}
```


GetDP solver - Constructing your own model

```
FunctionSpace {
    { Name H1_0; Type Form0;
        BasisFunction {
            { Name si; NameOfCoef ui; Function BF_Node;
                Support Omega; Entity NodesOf[ All ]; }
        }
                        F
        u(x)\approxu
        Constraint {
            { NameOfCoef ui; EntityType NodesOf; NameOfConstraint Dirichlet; }
        }
    }
}
Formulation {
    { Name Laplace; Type FemEquation;
        Quantity {
            { Name u; Type Local; NameOfSpace H1_0; }
        }
        Equation {
            Galerkin { [ - alpha[] * Dof{Grad u} , {Grad u} ]; - < < }\alpha(x)\operatorname{grad}u(x)\cdot\operatorname{grad}\mp@subsup{u}{}{\prime}(x)d
                In Omega; Jacobian Vol; Integration I1; }
            Galerkin { [ - f[], {u} ];
                In Omega; Jacobian Vol; Integration I1; }
        }
        - < < }f(\boldsymbol{x})\mp@subsup{u}{}{\prime}(\boldsymbol{x})d
    =0
    }
}
```


GetDP solver - Constructing your own model

```
Resolution {
    { Name MyResolution;
        System {
            { Name A; NameOfFormulation Laplace; }
        }
        Operation {
            Generate[A]; Solve[A]; SaveSolution[A]; Au =f
        }
    }
}
PostProcessing {
    { Name MyPostPro; NameOfFormulation Laplace;
        PostQuantity {
            { Name u; Value { Term { [ {u} ]; In Omega; Jacobian Vol; } } }
        }
    }
}
PostOperation {
    { Name u; NameOfPostProcessing MyPostPro;
        Operation {
            Print[ u, OnElementsOf Omega, File "u.pos" ];
        }
    }
}
```


GetDP solver - Constructing your own model

- Note that Gamma0 in "new.pro" does not actually contain the whole boundary of the magnetometer: the homogeneous Dirichlet boundary condition will only be applied on the electrodes. Question: what happens on the rest of the boundary? (As an exercise, modify "new.geo" to fix this.)
- The complete GetDP documentation is available on http://getdp.info
- We will study the physics and the implementation of electromagnetic, thermal and mechanical formulations on Tuesday and Wednesday

Post-processing

Post-processing with Gmsh

- Once you compute a solution by pressing "Run", it is merged and displayed automatically in the graphic window; it is called a "view"
- Check/uncheck the views in "Modules->Postprocessing" to show or hide them
- The Left/Right keyboard arrows allow to navigate in time
- The Up/Down arrows on the keyboard allow to navigate between views
- Click on the arrow next to a view name to access the view options

Post-processing with Gmsh

- A video tutorial showing how to use basic postprocessing features is available here: http://youtu.be/oS3T8i07wkI

Electromagnetism and Heat Transfer

Electromagnetic models
 Different types of field computations

Electrostatics - Distribution of electric field due to static charges and/or electric potential difference

$$
C=\frac{Q}{V}=\frac{\epsilon S}{d}
$$

Electrokinetics - Distribution of static electric current in conductors

$$
R=\frac{V}{I}=\frac{l}{\sigma S}
$$

Electrodynamics - Distribution of electric field and electric current in materials (insulating \& conducting)

Magnetostatics - Distribution of static magnetic

$$
\delta=\sqrt{\frac{2}{\omega \mu \sigma}}
$$ field due to static currents (DC) \& permanent magnets

$$
L=\frac{\Phi}{m \cdot m \cdot f}=n^{2} \frac{\mu_{0} S}{l}
$$

Magnetodynamics - Distribution of magnetic field and eddy currents due to time-variable sources

Full wave - Propagation of electromagnetic fields

Electrostatics

Phenomena involving time-independent distributions of charges \& fields $\partial_{t} \boldsymbol{b}=0$

$$
\begin{aligned}
\text { curl } \boldsymbol{e} & =0 & & \text { boundary conditions } \\
\operatorname{div} \boldsymbol{d} & =q & & \boldsymbol{n} \times\left.\boldsymbol{e}\right|_{\Gamma_{e}}=0 \\
\boldsymbol{d} & =\epsilon \boldsymbol{e} & & \left.\boldsymbol{n} \cdot \boldsymbol{j}\right|_{\Gamma_{j}}=0
\end{aligned}
$$

electric scalar potential formulation in
$-\operatorname{div}(\epsilon \operatorname{grad} v)=q, \quad e=-\operatorname{grad} v^{\Omega}$ \Downarrow no charges

$-\operatorname{div} \operatorname{grad} v=-\Delta v=0 \quad$ Laplace equation
in each conducting region imposed potential at boundary

$$
\Omega_{c, i}, v=\left.v_{i} \Rightarrow v\right|_{\Gamma_{c, i}}=v_{i}
$$

Electrostatics

Electrokinetics

$\operatorname{curl} \boldsymbol{e}=0$
$\operatorname{curl} \boldsymbol{h}=j \Rightarrow \operatorname{div} \boldsymbol{j}=0$
$j=\sigma e$
boundary conditions (BC)
$\boldsymbol{n} \times\left.\boldsymbol{e}\right|_{\Gamma_{e}}=0$
$\left.\boldsymbol{n} \cdot \boldsymbol{j}\right|_{\Gamma_{j}}=0$
electric scalar potential formulation

$$
-\operatorname{div}(\sigma \operatorname{grad} v)=0, \quad \boldsymbol{e}=-\operatorname{grad} v
$$

formulation for the conducting region Ω_{c}
in each electrode imposed potential

$$
\Gamma_{e, i}, v=\left.v_{i} \Rightarrow v\right|_{\Gamma_{e, i}}=v_{i}
$$

Electrokinetics

grounding systems: combination of rods \& cables

Electrodynamics

$$
\begin{aligned}
\operatorname{curl} \boldsymbol{e} & =0 \\
\operatorname{curl} \boldsymbol{h} & =j+\partial_{t} \boldsymbol{d} \Rightarrow \operatorname{div}\left(\boldsymbol{j}+\partial_{t} \boldsymbol{d}\right)=0 \\
\boldsymbol{j} & =\sigma \boldsymbol{e} \\
\boldsymbol{d} & =\epsilon \boldsymbol{e}
\end{aligned}
$$

electric scalar potential formulation
$-\operatorname{div}\left(\sigma \operatorname{grad} v+\epsilon \operatorname{grad} \partial_{t} v\right)=0, \quad \boldsymbol{e}=-\operatorname{grad} v$

Electrodynamics

Tissue
Muscle
White matter
Grey matter
Cerebellum
Eyes
Spinal chord
Lungs
Heart
Veins
Liver

Conductivity (S/m)

ELLA
0.2330
0.0533
$0.0753-0.5155$
$0.0953-0.3020$
1.5000
0.0274
0.0684
0.0827
0.7000
0.0367

Iso2mesh
45 different tissues 1 e6 nodes 5.8 e 6 tetrahedra

Magnetostatics

$$
L=\frac{\Phi}{m \cdot m \cdot f}=n^{2} \frac{\mu_{0} S}{l}
$$

$$
\begin{aligned}
\operatorname{curl} \boldsymbol{h} & =\boldsymbol{j}_{s} \\
\operatorname{div} \boldsymbol{b} & =0 \\
\boldsymbol{b} & =\mu \boldsymbol{h}\left(+\boldsymbol{b}_{s}\right) \\
\boldsymbol{h} & =\nu \boldsymbol{b}\left(+\boldsymbol{h}_{s}\right)
\end{aligned}
$$

Possible sources:

magnetic vector potential formulation $\operatorname{curl} \nu \operatorname{curl} \boldsymbol{a}=\boldsymbol{j}_{s}, \quad \boldsymbol{b}=\operatorname{curl} \boldsymbol{a}$
\boldsymbol{j}_{s} imposed current density in inductor
\boldsymbol{b}_{s} remanent induction if magnets
\boldsymbol{h}_{s} remanent magnetic field if magnets

Magnetostatics

Magnetodynamics

$$
\begin{aligned}
\operatorname{curl} \boldsymbol{h} & =\boldsymbol{j} \\
\operatorname{curl} \boldsymbol{e} & =-\partial_{t} \boldsymbol{b} \\
\operatorname{div} \boldsymbol{b} & =0 \\
\boldsymbol{b} & =\mu \boldsymbol{h}+\boldsymbol{b}_{s} \\
\boldsymbol{j} & =\sigma \boldsymbol{e}+\boldsymbol{j}_{s}
\end{aligned}
$$

magnetic vector potential formulation
$\operatorname{curl} \nu \operatorname{curl} \boldsymbol{a}+\sigma\left(\partial_{t} \boldsymbol{a}+\operatorname{grad} v\right)=\boldsymbol{j}_{s}, \quad \boldsymbol{b}=\operatorname{curl} \boldsymbol{a}$
reluctivity $\nu=\frac{1}{\mu}$

$$
\boldsymbol{e}=-\operatorname{grad} v-\partial_{t} \boldsymbol{a}
$$

Magnetodynamics

Induction heating

eddy current distribution

x x x

Full wave

total electric field $=$ scattered field + incident field

$$
\begin{aligned}
\operatorname{curl} \boldsymbol{h} & =\boldsymbol{j}+\partial_{t} \boldsymbol{d} \\
\operatorname{curl} \boldsymbol{e} & =-\partial_{t} \boldsymbol{b} \\
\boldsymbol{b} & =\mu \boldsymbol{h} \\
\boldsymbol{d} & =\epsilon \boldsymbol{e} \\
\boldsymbol{j} & =\sigma \boldsymbol{e}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{e}=\boldsymbol{e}_{s}+\boldsymbol{e}_{i n c} \\
& \boldsymbol{e}_{s}=(\boldsymbol{n} \times \boldsymbol{e}) \times \boldsymbol{n}
\end{aligned}
$$

+ Silver-Müller radiation condition at infinity (outgoing waves)

$$
\begin{aligned}
& \operatorname{curl} \boldsymbol{e} \times \boldsymbol{n}-\imath k((\boldsymbol{n} \times \boldsymbol{e}) \times \boldsymbol{n})= \\
& \operatorname{curl} \boldsymbol{e}_{\text {inc }} \times \boldsymbol{n}-\imath k\left(\left(\boldsymbol{n} \times \boldsymbol{e}_{\text {inc }}\right) \times \boldsymbol{n}\right), \text { on } \Gamma
\end{aligned}
$$

electric or magnetic field formulation

$$
\begin{aligned}
& \text { time domain } \\
& \begin{aligned}
\operatorname{curl} \operatorname{curl} \boldsymbol{e}+\sigma \mu \partial_{t} \boldsymbol{e}+\epsilon \mu \partial_{t}^{2} \boldsymbol{e} & =0 \\
\operatorname{curl} \operatorname{curl} \boldsymbol{h}+\sigma \mu \partial_{t} \boldsymbol{h}+\epsilon \mu \partial_{t}^{2} \boldsymbol{h} & =0
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{r}
\text { frequency domain } \quad \omega=2 \pi f \\
\Delta \boldsymbol{e}-\imath \omega \sigma \mu \boldsymbol{e}+\omega^{2} \epsilon \mu \boldsymbol{e}=0 \\
\Delta \boldsymbol{h}-\imath \omega \sigma \mu \boldsymbol{h}+\omega^{2} \epsilon \mu \boldsymbol{h}=0
\end{array}
$$

Full wave

Model choice

Maxwell's equations \& constitutive relations in frequency domain, without sources:

Helmholtz equations
$\Delta \boldsymbol{e}+k^{2} \boldsymbol{e}=0$
$\Delta \boldsymbol{h}+k^{2} \boldsymbol{h}=0$
$\Delta \boldsymbol{e}-\imath \omega \sigma \mu \boldsymbol{e}+\omega^{2} \epsilon \mu \boldsymbol{e}=0$

$\Delta \boldsymbol{h}-\imath \omega \sigma \mu \boldsymbol{h}+\omega^{2} \epsilon \mu \boldsymbol{h}=0$$\xrightarrow[k^{2}=\omega^{2} \epsilon \mu]{\sigma=0+\text { no RHS term }} \Rightarrow$| $\Delta \boldsymbol{e}+k^{2} \boldsymbol{e}=0$ |
| :--- |
| $\Delta \boldsymbol{h}+k^{2} \boldsymbol{h}=0$ |

Using characteristic lengths

- domain size L
- skin depth $\delta=\sqrt{\frac{2}{\omega \sigma \mu}}$
- wavelength $\lambda=\frac{2 \pi}{k}$, wave number $k=\frac{\omega}{c}$, speed of light $c=\frac{1}{\sqrt{\epsilon \mu}}$
allows to write them in non-dimensional form:

$$
\begin{aligned}
& \left(\frac{3}{L^{2}}-\frac{2 \imath}{\delta^{2}}+\frac{4 \pi}{\lambda^{2}}\right) \boldsymbol{e}=0 \\
& \left(\frac{3}{L^{2}}-\frac{2 \imath}{\delta^{2}}+\frac{4 \pi}{\lambda^{2}}\right) \boldsymbol{h}=0
\end{aligned}
$$

Model choice

EM model	governing equations
electrostatics -	$\begin{aligned} & \operatorname{curl} \boldsymbol{e}=0, \operatorname{div} \boldsymbol{d}=q \\ & \boldsymbol{d}=\epsilon \boldsymbol{e} \end{aligned}$
electrokinetics -WM-	$\begin{aligned} & \operatorname{curl} \boldsymbol{e}=0, \operatorname{div} \boldsymbol{j}=0 \\ & \boldsymbol{j}=\sigma \boldsymbol{e} \end{aligned}$
electrodynamics	$\begin{aligned} & \operatorname{curl} \boldsymbol{e}=0, \operatorname{div}\left(\boldsymbol{j}+\partial_{t} \boldsymbol{d}\right)=0 \\ & \boldsymbol{j}=\sigma \boldsymbol{e}, \boldsymbol{d}=\epsilon \boldsymbol{e} \end{aligned}$
magnetostatics -0000	$\begin{aligned} & \operatorname{curl} \boldsymbol{h}=\boldsymbol{j}, \operatorname{div} \boldsymbol{b}=0 \\ & \boldsymbol{b}=\mu \boldsymbol{h}, \boldsymbol{h}=\nu \boldsymbol{b} \end{aligned}$
magnetodynamics- \mathbf{W}	$\begin{aligned} & \operatorname{curl} \boldsymbol{h}=\boldsymbol{j}, \operatorname{curl} \boldsymbol{e}=-\partial_{t} \boldsymbol{b}, \operatorname{div} \boldsymbol{b}=0 \\ & \boldsymbol{b}=\mu \boldsymbol{h}, \boldsymbol{j}=\sigma \boldsymbol{e} \end{aligned}$
full wave	$\begin{aligned} & \operatorname{curl} \boldsymbol{h}=\boldsymbol{j}+\partial_{t} \boldsymbol{d}, \operatorname{curl} \boldsymbol{e}=-\partial_{t} \boldsymbol{b}, \operatorname{div} \boldsymbol{b}=0 \\ & \boldsymbol{b}=\mu \boldsymbol{h}, \boldsymbol{j}=\sigma \boldsymbol{e}, \boldsymbol{d}=\epsilon \boldsymbol{e} \end{aligned}$

Continuous mathematical structure

Maxwell's equations

$$
\begin{aligned}
\operatorname{grad} f_{0} & \equiv \nabla f_{0}=\left(\partial_{x}, \partial_{y}, \partial_{z}\right) f_{0} \\
\operatorname{curl} \boldsymbol{f}_{1} & \equiv \nabla \times \boldsymbol{f}_{1} \equiv\left(\partial_{x}, \partial_{y}, \partial_{z}\right) \times \boldsymbol{f}_{1} \\
\operatorname{div} \boldsymbol{f}_{2} & \equiv \nabla \cdot \boldsymbol{f}_{2} \equiv\left(\partial_{x}, \partial_{y}, \partial_{z}\right) \cdot \boldsymbol{f}_{2}
\end{aligned}
$$

$\operatorname{curl} \boldsymbol{h}-\partial_{t} \boldsymbol{d}=\boldsymbol{j}$
$\operatorname{curl} \boldsymbol{e}+\partial_{t} \boldsymbol{b}=0$

$$
\boldsymbol{b}=\mathcal{B}(\boldsymbol{e}, \boldsymbol{h})=\mu \boldsymbol{h}\left(+\boldsymbol{b}_{s}\right)
$$

$$
\begin{aligned}
\operatorname{div} \boldsymbol{b} & =0 \\
\operatorname{div} \boldsymbol{d} & =q
\end{aligned}
$$

$$
\boldsymbol{d}=\mathcal{D}(\boldsymbol{e}, \boldsymbol{h})=\epsilon \boldsymbol{e}\left(+\boldsymbol{d}_{s}\right)
$$

$$
\boldsymbol{j}=\mathcal{J}(\boldsymbol{e}, \boldsymbol{h})=\sigma \boldsymbol{e}\left(+\boldsymbol{j}_{s}\right)
$$

v
0 -form $=$ scalar, continuous field
grad
$\boldsymbol{h}, \boldsymbol{e} \quad$ 1-form $=$ vector field of continuous tangential component
curl
$\boldsymbol{b}, \boldsymbol{j}, \boldsymbol{d} \quad$ 2-form $=$ vector field of continuous normal component

$$
\text { div } 3 \text {-form }=\text { scalar field }
$$

Square integrable vector fields Useful definitions

The solutions of Maxwell's equations belong to spaces of square integrable scalar and vector fields $L^{2}(\Omega)$ and $L^{2}(\Omega)$. They are defined by

$$
\begin{array}{r}
L^{2}(\Omega)=\left\{u: \int_{\Omega} u^{2}(\boldsymbol{x}) d \boldsymbol{x}<\infty\right\} \\
\boldsymbol{L}^{2}(\Omega)=\left\{\boldsymbol{u}: \int_{\Omega}\|\boldsymbol{u}(\boldsymbol{x})\|^{2} d \boldsymbol{x}<\infty\right\}
\end{array}
$$

The scalar product of $u, v \in L^{2}(\Omega)$ and $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)$ is defined by

$$
(u, v)_{\Omega}=\int_{\Omega} u(\boldsymbol{x}) v(\boldsymbol{x}) d \boldsymbol{x} \quad \text { and } \quad(\boldsymbol{u}, \boldsymbol{v})_{\Omega}=\int_{\Omega} \boldsymbol{u}(\boldsymbol{x}) \cdot \boldsymbol{v}(\boldsymbol{x}) d \boldsymbol{x}
$$

The norm of $u \in L^{2}(\Omega)$ and $\boldsymbol{u} \in \boldsymbol{L}^{2}(\Omega)$ is defined by

$$
\begin{aligned}
\|u\|_{L^{2}(\Omega)} & =(u, u)_{\Omega}^{1 / 2}=\left[\int_{\Omega} u^{2}(\boldsymbol{x}) d \boldsymbol{x}\right]^{1 / 2} \\
\|\boldsymbol{u}\|_{\boldsymbol{L}^{2}(\Omega)} & =(\boldsymbol{u}, \boldsymbol{u})_{\Omega}^{1 / 2}=\left[\int_{\Omega}\|\boldsymbol{u}(\boldsymbol{x})\|^{2} d \boldsymbol{x}\right]^{1 / 2}
\end{aligned}
$$

Maxwell's house -Tonti diagram

1-form

2-form

$\boldsymbol{d}, \boldsymbol{j} \quad \boldsymbol{H}_{h}(\mathrm{div} ; \Omega) \stackrel{\epsilon, \sigma}{\longleftrightarrow} H_{e}($ curl $; \Omega)$

$q \quad L^{2}(\Omega)$

3-form

b 2-form boundary conditions accounted for in subspaces
boundary split in two parts
square integrable scalar \& vector fields: field + field with differential operator

$$
\begin{aligned}
H_{f}^{1}(\Omega) & =\left\{u \in L^{2}(\Omega): \operatorname{grad} u \in \boldsymbol{L}^{2}(\Omega),\left.u\right|_{\Gamma_{f}}=u_{f}\right\} \\
\boldsymbol{H}_{f}(\operatorname{curl} ; \Omega) & =\left\{\boldsymbol{u} \in \boldsymbol{L}^{2}(\Omega): \operatorname{curl} \boldsymbol{u} \in \boldsymbol{L}^{2}(\Omega), \boldsymbol{n} \times\left.\boldsymbol{u}\right|_{\Gamma_{f}}=\boldsymbol{n} \times \boldsymbol{u}_{f}\right\} \\
\boldsymbol{H}_{f}(\operatorname{div} ; \Omega) & =\left\{\boldsymbol{u} \in \boldsymbol{L}^{2}(\Omega): \operatorname{div} \boldsymbol{u} \in L^{2}(\Omega),\left.\boldsymbol{n} \cdot \boldsymbol{u}\right|_{\Gamma_{f}}=\boldsymbol{n} \cdot \boldsymbol{u}_{f}\right\}
\end{aligned}
$$

$$
f=e \text { or } h
$$

Classification of $2^{\text {nd }}$ order PDEs

EM problems involve linear second order partial differential equations (PDE), for the unknown field u and the source function $f(x, y)$, that can be written (2D):

$$
\mathcal{L}(u)=a \frac{\partial^{2} u(x, y)}{\partial x^{2}}+b \frac{\partial^{2} u(x, y)}{\partial x \partial y}+c \frac{\partial^{2} u(x, y)}{\partial y^{2}}+d \frac{\partial u(x, y)}{\partial x}+e \frac{\partial u(x, y)}{\partial y}+g u=f
$$

with coefficients a, b, c, d, e, g are functions of x, y, but they can also depend on u (nonlinear PDE), homogeneous if $f=0$, inhomogeneous if $f \neq 0$
From the homogeneous case with constant coefficients, we get

$$
a x^{2}+b x y+c y^{2}+d x+e y+g=0
$$

$$
\left|\begin{array}{ccc}
a & b / 2 & d / 2 \\
b / 2 & c & e / 2 \\
d / 2 & e / 2 & g
\end{array}\right|=\left(a c-b^{2} / 4\right) g+b e d / 4-c d^{2} / 4-a e^{2} / 4
$$

$$
\left\{\begin{array}{lll}
b^{2}-4 a c<0 & \text { elliptic } & \Rightarrow \\
b^{2}-4 \text { steady-state problems } \\
b^{2}-4 a c=0 & \text { parabolic } & \Rightarrow \\
b^{2}-4 a c>0 & \text { diffusion problems } \\
\text { hyperbolic } & \Rightarrow & \text { propagation problems }
\end{array}\right.
$$

Classification of $2^{\text {nd }}$ order PDEs (cont'd)

elliptic e.g. electrostatics $\quad \boldsymbol{e}=-\operatorname{grad} v, \boldsymbol{d}=\boldsymbol{\epsilon} \boldsymbol{e}$
$-\Delta v=-\frac{\partial^{2} v(x, y, z)}{\partial x^{2}}-\frac{\partial^{2} v(x, y, z)}{\partial y^{2}}-\frac{\partial^{2} v(x, y, z)}{\partial z^{2}}=\frac{q}{\epsilon}$
$\boldsymbol{n} \times\left.\boldsymbol{e}\right|_{\Gamma_{e}}=0$
$\left.\boldsymbol{n} \cdot \boldsymbol{d}\right|_{\Gamma_{d}}=0$
parabolic e.g. magnetodynamics

$$
\begin{array}{cll}
\operatorname{curl} \nu \operatorname{curl} \boldsymbol{a}+\sigma\left(\partial_{t} \boldsymbol{a}+\operatorname{grad} v\right)=\boldsymbol{j}_{s}, & \boldsymbol{b}=\operatorname{curl} \boldsymbol{a} \\
\boldsymbol{n} \times\left.\boldsymbol{h}\right|_{\Gamma_{h}}=0 & \boldsymbol{a}\left(t=t_{0}\right)=\boldsymbol{a}_{0} & \boldsymbol{e}=-\operatorname{grad} v-\partial_{t} \boldsymbol{a} \\
\left.\boldsymbol{n} \cdot \boldsymbol{b}\right|_{\Gamma_{b}}=0 & &
\end{array}
$$

hyperbolic e.g. full wave in time domain
$\operatorname{curl} \operatorname{curl} \boldsymbol{e}+\sigma \mu \partial_{t} \boldsymbol{e}+\epsilon \mu \partial_{t}^{2} \boldsymbol{e}=0$

$$
\begin{aligned}
e\left(t=t_{n}\right) & =\boldsymbol{e}_{n} \\
\boldsymbol{e}\left(t=t_{n-1}\right) & =\boldsymbol{e}_{n-1}
\end{aligned}
$$

$\boldsymbol{n} \times\left(\boldsymbol{e}^{t o t}-\boldsymbol{e}^{i n c}\right)+\sqrt{\frac{\mu}{\epsilon}} \boldsymbol{n} \times\left(\boldsymbol{n} \times\left(\boldsymbol{h}^{t o t}-\boldsymbol{h}^{i n c}\right)\right)=0$

Strong and weak formulations

$$
\begin{aligned}
& \text { notation } \\
& \begin{aligned}
(u, v)_{\Omega} & =\int_{\Omega} u \cdot v \mathrm{~d} \Omega
\end{aligned} \\
& \langle u, v\rangle_{\Gamma}=\int_{\Gamma} u \cdot v \mathrm{~d} \Gamma
\end{aligned}
$$

Strong formulation

$$
\begin{aligned}
\mathcal{L} u & =f \text { in } \Omega \\
\mathcal{B} u & =g \text { on } \Gamma
\end{aligned}
$$

$\checkmark \mathcal{L}$ differential operator of order n
$\checkmark \mathcal{L}^{*}$ adjoint of \mathcal{L}
$\checkmark \mathcal{B}$ differential operator imposing BC
$\checkmark f$ function in Ω, g function on $\Gamma=\partial \Omega$
$\checkmark u$ unknown function
$\checkmark Q_{g}$ linear function of v

$$
\left\{\begin{array}{l}
\text { find } u \text { so that } \\
\left(u, \mathcal{L}^{*} v\right)_{\Omega}-(f, v)_{\Omega}+\int_{\Gamma} Q_{g}(v) d s=0, \forall v \in V(\Omega)
\end{array}\right.
$$

Continuous system $\Rightarrow \infty \times \infty$ Discrete system $\quad \Rightarrow N \times N$ \Rightarrow numerical solution

$$
\begin{aligned}
& \text { Green formulae } \\
& (\mathcal{L} u, v)_{\Omega}-\left(u, \mathcal{L}^{*} v\right)_{\Omega}=\int_{\Gamma} Q(u, v) d s\left\{\begin{array}{c}
\text { grad-div type } \\
(\boldsymbol{v}, \operatorname{grad} u)_{\Omega}+(\operatorname{div} \boldsymbol{v}, u)_{\Omega}=\langle u, \hat{n} \cdot \boldsymbol{v}\rangle_{\Gamma} \\
\operatorname{curl-curl} \text { type } \\
(\boldsymbol{v}, \operatorname{curl} \boldsymbol{w})_{\Omega}-(\operatorname{curl} \boldsymbol{v}, \boldsymbol{w})_{\Omega}=\langle\boldsymbol{v} \times \hat{n}, \boldsymbol{w}\rangle_{\Gamma}
\end{array}\right.
\end{aligned}
$$

Strong and week formulations (cont'd)

e.g. strong electrostatic formulation $\boldsymbol{e}=-\operatorname{grad} v, \boldsymbol{d}=\epsilon \boldsymbol{e}$

$$
-\Delta v=-\frac{\partial^{2} v(x, y, z)}{\partial x^{2}}-\frac{\partial^{2} v(x, y, z)}{\partial y^{2}}-\frac{\partial^{2} v(x, y, z)}{\partial z^{2}}=\left.\frac{q}{\epsilon} \Rightarrow \boldsymbol{n}\right|_{\Gamma_{e}}=0 \quad \text { governing equations and } \mathrm{BCs} \quad\left\{\begin{array}{l}
\mathcal{L}=-\Delta \\
f=\frac{q}{\epsilon} \\
u=v
\end{array}\right.
$$

$\left.\boldsymbol{n} \cdot \boldsymbol{d}\right|_{\Gamma_{d}}=0$
e.g. weak electrostatic formulation

$$
\begin{aligned}
& \int_{\Omega}-\Delta v \cdot w \mathrm{~d} \Omega=\int_{\Omega}(-\operatorname{div}(\operatorname{grad} v)) \cdot w \mathrm{~d} \Omega=\int_{\Omega} \frac{q}{\epsilon} w \mathrm{~d} \Omega \\
& \boldsymbol{v} \cdot \operatorname{grad} u+u \operatorname{div} \boldsymbol{v}=\operatorname{div}(u \boldsymbol{v}) \quad \begin{array}{l}
\text { Green formula: } \\
\text { integrating by parts }
\end{array}
\end{aligned}
$$

$\int_{\Omega}(-\operatorname{div}(w \operatorname{grad} v)+\operatorname{grad} v \cdot \operatorname{grad} w) \mathrm{d} \Omega=\int_{\Omega} \frac{q}{\epsilon} w \mathrm{~d} \Omega$

$$
\begin{aligned}
\mathcal{L} u & =f \text { in } \Omega \\
\mathcal{B} u & =g \text { on } \Gamma
\end{aligned}
$$

- Local constraints
- boundary conditions (BCs) on local fields at the boundary of the domain
- their choice influences the final solution
- they can be exploited to reduce the computational domain
- interface conditions (ICs): coupling of fields between subdomains
- Global constraints
- Flux or circulations of fields to be fixed (current, voltage, e.m.f., m.m.f, charge)
- Flux or circulations of fields to be connected (circuit coupling)

Boundary conditions (BCs)

$$
\begin{aligned}
\mathcal{L} u & =f \text { in } \Omega \\
\mathcal{B} u & =g \text { on } \Gamma
\end{aligned}
$$

- Dirichlet BCs: fix the unknown at the boundary to a given value

$$
\left.u\right|_{\Gamma}=u_{0}\left\{\begin{array}{l}
=0, \text { homogeneous BC } \\
\neq 0, \text { inhomogeneous BC }
\end{array}\right.
$$

- Neumann BCs: fix the normal derivative of the unknown at the boundary to a given value

$$
\frac{\partial u(\boldsymbol{x})}{\partial n}=w(\boldsymbol{x}), \boldsymbol{x} \text { on } \Gamma
$$

- Mixed BCs: a combination of Dirichlet and Neumann BCs

$$
\begin{aligned}
& \frac{\partial u(\boldsymbol{x})}{\partial n}+f_{1}(\boldsymbol{x}) u=f_{2}(\boldsymbol{x}), \boldsymbol{x} \text { on } \Gamma \\
& f_{1}(\boldsymbol{x}) u \text { and } f_{2}(\boldsymbol{x}) \text { explicitly known }
\end{aligned}
$$

Boundary conditions (BCs) (cont'd)

$$
\begin{aligned}
\mathcal{L} u & =f \text { in } \Omega \\
\mathcal{B} u & =g \text { on } \Gamma
\end{aligned}
$$

- Periodic BCs: fixing the unknown at the boundary to a given value

$$
\begin{gathered}
u\left(\boldsymbol{x}_{0}\right)+C_{1} u\left(\boldsymbol{x}_{1}\right)=C_{2}, \quad \boldsymbol{x}_{0} \text { on } \Gamma_{0}, \boldsymbol{x}_{1} \text { on } \Gamma_{1} \\
\text { or } \frac{\partial u\left(\boldsymbol{x}_{0}\right)}{\partial n}+C_{1}^{\prime} \frac{\partial u\left(\boldsymbol{x}_{1}\right)}{\partial n}=C_{2}^{\prime}, \quad \boldsymbol{x}_{0} \text { on } \Gamma_{0}, \boldsymbol{x}_{1} \text { on } \Gamma_{1}
\end{gathered}
$$

- Floating BCs: unknown fixed to a value that still has to be determined, often related to global boundary conditions

Dirichlet BC

Neumann BC

BCs - symmetry

Periodic BCs

$p=$ number of poles $\quad k=1,2,3, \ldots$

1/8 model anti-periodic BCs

Discrete mathematical structure

 Whitney elements
Discrete mathematical structure

Replace the continuous spaces (infinite dimension) by discrete spaces (finite dimension)

Finite elements

- set of linearly independent test and trial functions (also called basis/shape functions and weighting functions)
- commonly piecewise polynomial
- defined at a structured grid or an unstructured mesh
- compact support
- scalar or vectorial functions

Finite elements geometry defined by nodes

The Whitney elements

 \checkmark geometrical element \mathcal{G} $\checkmark \Sigma=$ set of N Dofs$\checkmark S$ function of finite dimension N
Let us consider a mesh of Ω formed by geometrical elements \mathcal{G} with nodes \mathcal{N}, edges \mathcal{E}, faces \mathcal{F}, volumes \mathcal{V},

The Whitney elements of order p are expressed as
$\boldsymbol{w}_{n_{0}, \cdots, n_{p}}=p!\sum_{j=0}^{p}(-1)^{m} \varsigma_{n_{m}} \operatorname{grad} \varsigma_{n_{0}} \times \cdots \times \operatorname{grad} \varsigma_{n_{m-1}} \times \operatorname{grad} \varsigma_{n_{m+1}} \times \cdots \times \operatorname{grad} \varsigma_{n_{p}}$
with $\varsigma_{n}(x)$ barycentric weight of x with respect to node n in \mathcal{G}

The Whitney elements of order 0 Nodal elements

$$
w_{n}=\varsigma_{n}
$$

with $n \in \mathcal{N}$ (node set)
span space $W^{0}(\mathcal{G})$
The interpolation of a function u is given by

$$
\begin{aligned}
& I(u)=\sum_{x_{i} \in \mathcal{N}} u_{i} w_{i} \\
& \text { with } u_{i}=\alpha_{i}(u)=u\left(x_{i}\right)
\end{aligned}
$$

W^{n}
\checkmark piecewise linear continuous:
first order scalar Lagrange finite elements
\checkmark discretisation of scalar fields
$\checkmark w_{n}=1$ at node $n, 0$ at other nodes
$\checkmark w_{n}=1$ is continuous across faces

The Whitney elements of order 1 Edge elements

$W^{\{m, n\}}$

$$
\begin{array}{r}
\boldsymbol{w}_{e}=\boldsymbol{w}_{\{m, n\}}=\varsigma_{m} \operatorname{grad} \varsigma_{n}-\varsigma_{n} \operatorname{grad} \varsigma_{m}, \\
\text { with } e \in \mathcal{E}(\text { edge set }) \\
\text { span space } W^{1}(\mathcal{G})
\end{array}
$$

The interpolation of a function \boldsymbol{u} is given by

$$
\begin{aligned}
& I(\boldsymbol{u})=\sum_{e \in \mathcal{E}} u_{e} \boldsymbol{w}_{e} \\
& \text { with } u_{e}=\alpha_{e}(\boldsymbol{u})=\int_{e} \boldsymbol{u} \cdot d \boldsymbol{l}, \forall e \in \mathcal{E}
\end{aligned}
$$

\checkmark Dof $=$ circulations of field along edges of mesh
\checkmark discretisation of 1-forms, e.g. $\boldsymbol{h}, \boldsymbol{e}$
\checkmark tangential component continuous across faces
\checkmark circulation of $\boldsymbol{w}_{e}=1$ along edge $e, 0$ across other edges $N_{F, m \widetilde{n}}$

Whitney elements of order 2

Face elements

Whitney elements of order 3
 Volume elements

$w_{v}=w_{\{k, l, m, n\}}=6\left(\varsigma_{k} \operatorname{grad} \varsigma_{l} \times \operatorname{grad} \varsigma_{m} \times \operatorname{grad} \varsigma_{n}-\varsigma_{l} \operatorname{grad} \varsigma_{k} \times \operatorname{grad} \varsigma_{m} \times \operatorname{grad} \varsigma_{n}+\right.$ $\left.\varsigma_{n} \operatorname{grad} \varsigma_{k} \times \operatorname{grad} \varsigma_{l} \times \operatorname{grad} \varsigma_{m}-\varsigma_{n} \operatorname{grad} \varsigma_{k} \times \operatorname{grad} \varsigma_{l} \times \operatorname{grad} \varsigma_{m}\right)$

$$
\text { with } v=\{k, l, m, n\} \in \mathcal{V} \text { (volume set) }
$$

The interpolation of a function u is given by

$$
\begin{aligned}
& I(u)=\sum_{v \in \mathcal{V}} u_{v} w_{v} \\
& \text { with } u_{v}=\alpha_{v}(u)=\int_{v} u d v
\end{aligned}
$$

$\{\mathbf{k}, \mathbf{l}, \mathrm{m}, \mathrm{n}\} \quad \checkmark$ piecewise constant functions
\checkmark Dof $=$ integration over its volume
\checkmark discretisation of densities
$\checkmark \sum w_{v}=1$ over the volume of $\mathcal{G}, 0$ over other volumes

Conformity

\checkmark Nodal elements: Conforming finite elements (in $\mathcal{H}^{1}(\Omega)$) interpolate scalar fields that are continuous across any interface.
Discretisation of scalar quantities: potentials φ, v, temperature...
\checkmark Edge elements: Curl-conforming finite elements (in $\boldsymbol{H}(\operatorname{curl} ; \Omega)$) ensure the continuity of the tangential component of the field.
Discretisation of the magnetic field \boldsymbol{h}, the magnetic vector potential \boldsymbol{a} or the electric field \boldsymbol{e}.

Conformity

\checkmark Face elements: Div-conforming finite elements (in $\boldsymbol{H}(\operatorname{div} ; \Omega)$) ensure the continuity of the normal component of the interpolated field. Discretisation of the magnetic flux density \boldsymbol{b}, the current density \boldsymbol{j} or the electric flux density \boldsymbol{d}.

$$
\begin{aligned}
\int_{S} \boldsymbol{b} \cdot \hat{n} d s & =0 \\
\int_{S} \boldsymbol{d} \cdot \hat{n} d s & =\int_{V} \rho d v \\
\int_{S} \boldsymbol{j} \cdot \hat{n} d s & =0
\end{aligned}
$$

$$
\begin{aligned}
& \left.\hat{n} \cdot\left(\boldsymbol{b}_{2}-\boldsymbol{b}_{1}\right)\right|_{S}=0 \\
& \left.\hat{n} \cdot\left(\boldsymbol{d}_{2}-\boldsymbol{d}_{1}\right)\right|_{S}=\rho_{s}
\end{aligned}
$$

\checkmark Volume elements: Finite elements in $L^{2}(\Omega)$ do not impose any continuity (discontinuous) between elements on the interpolated field.
Discretisation of quantities that may vary from one element to the other e.g. the electric charge density ρ.

$$
\int_{S} \boldsymbol{d} \cdot \hat{n} d s=\int_{V} \rho d v
$$

Electrokinetic formulation and

 discretization
Electrostatics

Phenomena involving time-independent distributions of charges \& fields
" d side"

electric vector potential (u-) formulation
electric scalar potential (v-) formulation

$$
\begin{array}{rlrl}
\text { curl } \boldsymbol{e} & =0 & \text { boundary conditions } \\
\operatorname{div} \boldsymbol{d} & =q & n \times\left.\boldsymbol{n}\right|_{\Gamma_{e}}=0 \\
\boldsymbol{d} & =\epsilon \boldsymbol{e} & & \left.\boldsymbol{n} \cdot \boldsymbol{d}\right|_{\Gamma_{d}}=0
\end{array}
$$

Electrostatics

Spatial discretization - electrostatics

Weighted residual approach

$$
-\operatorname{div}(\epsilon \operatorname{grad} v)=q \quad \text { in } \Omega
$$

We integrate the equation weighted by test functions $w_{i}(\boldsymbol{x})$ over the whole domain:

$$
\int_{\Omega}(-\operatorname{div}(\epsilon \operatorname{grad} v)) w_{i} \mathrm{~d} \Omega=\int_{\Omega} q w_{i} \mathrm{~d} \Omega, \quad \forall w_{i}(\boldsymbol{x})
$$

$w_{i}(\boldsymbol{x})$ weighting or test functions

Spatial discretization - electrostatics (II)

Weak formulation $\quad \forall w_{i}(\boldsymbol{x})$

search wiki vector calculus

$$
\begin{aligned}
& \int_{\Omega}(-\operatorname{div}(\epsilon \operatorname{grad} v)) w_{i} \mathrm{~d} \Omega=\int_{\Omega} q w_{i} \mathrm{~d} \Omega \\
& \downarrow \boldsymbol{v} \cdot \operatorname{grad} u+u \operatorname{div} \boldsymbol{v}=\operatorname{div}(u \boldsymbol{v}) \quad \begin{array}{r}
\text { integration by parts } \\
\text { Green formula }
\end{array} \\
& \int_{\Omega}\left(-\operatorname{div}\left(w_{i} \epsilon \operatorname{grad} v\right)+\epsilon \operatorname{grad} v \cdot \operatorname{grad} w_{i}\right) \mathrm{d} \Omega=\int_{\Omega} q w_{i} \mathrm{~d} \Omega
\end{aligned} \int_{\Omega} \operatorname{div} \boldsymbol{a} \mathrm{d} \Omega=\oint_{\partial \Omega} \boldsymbol{a} \mathrm{d} \Gamma \quad \text { divergence theorem }
$$

only the first derivative of the electric potential is now required

Spatial discretization - electrostatics (III)

Boundary integral

$$
\int_{\partial \Omega} w_{i} \underbrace{(-\epsilon \operatorname{grad} v)}_{\boldsymbol{n} \cdot \boldsymbol{d}=d_{n}} \mathrm{~d} \Gamma
$$

$$
\forall w_{i}(\boldsymbol{x})
$$

$\Gamma_{\text {Dirichlet }}$
$\boldsymbol{n} \cdot \boldsymbol{d}=d_{n}$

$\underbrace{\int_{\Gamma_{\text {Dirichlet }}} w_{i}(-\epsilon \operatorname{grad} v) \mathrm{d} \Gamma}+\underbrace{\int_{\Gamma_{\text {Neumann }}} w_{i}(-\epsilon \operatorname{grad} v) \mathrm{d} \Gamma}$

$$
=0 \quad \forall w_{i}(\boldsymbol{x})
$$

if $w_{i}=0$ on $\Gamma_{\text {Dirichlet }}$ essential BC
natural BC

Spatial discretization - electrostatics (IV)

$v=\sum_{j} u_{j} s_{j}$ with $s_{j}(\boldsymbol{x})=0$ at $\Gamma_{\text {Dirichlet }}$
$\begin{cases}s_{j}(\mathbf{x}) & \text { shape functions } \\ u_{j} & \text { unknowns, degrees of freedom }\end{cases}$

$$
\begin{array}{ll}
\text { Ritz-Galerkin method } & s_{j}(\boldsymbol{x})=w_{j}(\boldsymbol{x}) \\
\text { Petrov-Galerkin method } & s_{j}(\boldsymbol{x}) \neq w_{j}(\boldsymbol{x})
\end{array}
$$

$$
\int_{\Omega} \epsilon \operatorname{grad} v \cdot \operatorname{grad} w_{i} \mathrm{~d} \Omega=\int_{\Omega} q w_{i} \mathrm{~d} \Omega
$$

$$
\sum_{j} u_{j} \underbrace{=k_{i j}}_{=k_{\Omega} \epsilon \operatorname{grad} w_{j} \cdot \operatorname{grad} w_{i} \mathrm{~d} \Omega} \underbrace{\int_{\Omega} q w_{i} \mathrm{~d} \Omega}_{=f_{i}} \Rightarrow\left[k_{i j}\right]\left[u_{j}\right]=\left[f_{i}\right]
$$

Electrokinetics

Phenomena involving time-independent (static) currents in conductors

$$
\sigma_{c}^{\Gamma_{c}} \sigma_{c, 1} V_{1} \quad \Gamma=\Gamma_{C} \cup \Gamma_{D}
$$

electric scalar potential ($v-$) formulation
curl $e=0$ $\operatorname{div} \boldsymbol{j}=0$
$\boldsymbol{j}=\sigma \boldsymbol{e}$
$\left.\boldsymbol{n} \cdot \boldsymbol{j}\right|_{\Gamma_{j}}=0$

Electrokinetics

Spatial discretization - electrokinetics

Weighted residual approach

$$
-\operatorname{div}(\sigma \operatorname{grad} v)=0 \quad \text { in } \Omega_{c}
$$

We integrate the equation weighted by test functions $w_{i}(\boldsymbol{x})$ over the whole domain:

$$
\int_{\Omega}(-\operatorname{div}(\sigma \operatorname{grad} v)) w_{i} \mathrm{~d} \Omega=0, \quad \forall w_{i}(\boldsymbol{x})
$$

$w_{i}(\boldsymbol{x})$ weighting or test functions

Spatial discretization - electrokinetics (II)

Weak formulation $\quad \forall w_{i}(\boldsymbol{x})$

$$
\begin{aligned}
& \int_{\Omega}(-\operatorname{div}(\sigma \operatorname{grad} v)) w_{i} \mathrm{~d} \Omega=0 \\
& \downarrow \boldsymbol{v} \cdot \operatorname{grad} u+u \operatorname{div} \boldsymbol{v}=\operatorname{div}(u \boldsymbol{v}) \quad \begin{array}{r}
\text { integration by parts } \\
\text { Green formula }
\end{array} \\
& \int_{\Omega}\left(-\operatorname{div}\left(w_{i} \sigma \operatorname{grad} v\right)+\sigma \operatorname{grad} v \cdot \operatorname{grad} w_{i}\right) \mathrm{d} \Omega=0 \\
& \int_{\Omega} \operatorname{div} \boldsymbol{a} \mathrm{d} \Omega=\oint_{\partial \Omega} \boldsymbol{a} \mathrm{d} \Gamma \quad \text { divergence theorem } \\
& \int_{\partial \Omega} w_{i}(-\sigma \operatorname{grad} v) \mathrm{d} \Gamma+\int_{\Omega} \sigma \operatorname{grad} v \cdot \operatorname{grad} w_{i} \mathrm{~d} \Omega=0
\end{aligned}
$$

only the first derivative of the electric potential is now required

Spatial discretization - electrokinetics (III)

Boundary integral

$$
\int_{\partial \Omega} w_{i} \underbrace{-\sigma \operatorname{grad} v)}_{n \cdot j=j_{n}=0} \mathrm{~d} \Gamma
$$

$\Gamma_{\text {Dirichlet }}$

$$
\forall w_{i}(\boldsymbol{x})
$$

$$
n \cdot j=j_{n}=0^{q_{p}}
$$

$$
\Gamma_{\text {Neumann }}
$$

$\underbrace{\int_{\Gamma_{\text {Dirichlet }}} w_{i}(-\sigma \operatorname{grad} v)}_{=0 \quad \forall w_{i}(\boldsymbol{x})}$
if $w_{i}=0$ on $\Gamma_{\text {Dirichlet }}$
essential BC
natural BC

$$
\begin{gathered}
\boldsymbol{n} \times\left.\boldsymbol{e}\right|_{\Gamma_{e}}=0 \\
\left.\boldsymbol{n} \cdot \boldsymbol{j}\right|_{\Gamma_{j}}=0
\end{gathered}
$$

Spatial discretization - electrokinetics (IV)

$v=\sum_{j} u_{j} s_{j}$ with $s_{j}(\boldsymbol{x})=0$ at $\Gamma_{\text {Dirichlet }}$
$\begin{cases}s_{j}(\mathbf{x}) & \text { shape functions } \\ u_{j} & \text { unknowns, degrees of freedom }\end{cases}$
Ritz-Galerkin method $\quad s_{j}(\boldsymbol{x})=w_{j}(\boldsymbol{x})$
Petrov-Galerkin method $\quad s_{j}(\boldsymbol{x}) \neq w_{j}(\boldsymbol{x})$

$$
\begin{aligned}
& \int_{\Omega} \sigma \operatorname{grad} v \cdot \operatorname{grad} w_{i} \mathrm{~d} \Omega=0 \\
& \sum_{j} u_{j} \underbrace{\downarrow}_{\int_{\Omega} \sigma} \underbrace{\downarrow \operatorname{grad} w_{j} \cdot \operatorname{grad} w_{i} \mathrm{~d} \Omega}_{i j}=0
\end{aligned}
$$

$$
\begin{gathered}
\text { matrix system } \\
{\left[k_{i j}\right]\left[u_{j}\right]=[0]}
\end{gathered}
$$ in U vector (potential at electrodes)

Function space - electric scalar potential

$$
v=\sum_{n \in \mathcal{N}} v_{n} s_{n}
$$

FunctionSpace\{
\{ Name Hgrad_v_EleKin; Type Form0; //discrete function space for H1_h

BasisFunction \{

\{ Name sn; NameOfCoef vn; Function BF_Node; //''P1 FEs'' Support DomainC_Ele; Entity NodesOf [All]; \}
\} Constraint \{
\{ NameOfCoef vn; EntityType NodesOf; NameOfConstraint ElectricScalarPotential; \} \}
\}
\}

Electrokinetic formulation: build equation!

FunctionSpace\{
\{ Name Hgrad_T; Type Form; //discrete function space for H1_h BasisFunction \{
\{ Name sn; NameOfCoef Tn; Function BF_Node; //''P1 Es',
Support Domain_The; Entity NodesOf [All]; \}
\}
Constraint \{
\{ NameOfCoef Tn; EntityType NodesOf; NameOfConstraint Temperature; \} \}

\}

\}

Constraint \{
\{ Name Temperature ;
Case \{
\{ Region Dirichlet ; Value 20. ; \} ~
\{ Region Dirichlet ; Value 20. ; \} ~

\}

Thermal formulation: build equation!

```
Formulation {
    { Name Thermal_T ; Type FemEquation ;
    Quantity {
            { Name T ; Type Local ; NameOfSpace Hgrad_T ; }
            { Name v ; Type Local ; NameOfSpace Hgrad_v_EleKin ; }
        }
        Equation {
            Galerkin { [ kappa[] * Dof{d T} , {d T} ] ;
                            In Domain_The; Integration GradGrad ; Jacobian Vol ; }
            Galerkin { DtDof[ rhoc[] * Dof{T} , {T} ] ;
                In Domain_The; Integration GradGrad ; Jacobian Vol ; }
            Galerkin { [ -1/sigma[] * SquNorm[sigma[]*{d v}] , {T} ] ;
                        In Domain_The ; Integration GradGrad ; Jacobian Vol ; }
}}\mp@subsup{}}{\mp@subsup{\int}{\mp@subsup{\Omega}{T}{}}{}}\kappa\operatorname{grad}T\cdot\operatorname{grad}\mp@subsup{w}{i}{}\textrm{d}\mp@subsup{\Omega}{T}{}+\mp@subsup{\int}{\mp@subsup{\Omega}{T}{}}{}\mp@subsup{\rho}{T}{}\mp@subsup{c}{p}{}\mp@subsup{\partial}{t}{}T\cdot\mp@subsup{w}{i}{}\textrm{d}\mp@subsup{\Omega}{T}{}+=\mp@subsup{\int}{\mp@subsup{\Omega}{T}{}}{}\mp@subsup{Q}{v}{}\cdot\mp@subsup{w}{i}{}\textrm{d}\mp@subsup{\Omega}{T}{}}{l
```

 \(\rho c_{p} \partial_{t} T=\operatorname{div}(\kappa \operatorname{grad} T)+Q_{v} \quad\) Heat conduction equation

Coupling: Electrokinetic + thermal resolution

Mechanics and Elasticity

Magnetometer = Electromagnetism + Elasticity

classical Electromagnetism
Vector fields: $\vec{B}, \vec{H}, \vec{J}, \ldots$
Vector analysis: div , curl , grad Assumes Euclidean space

Euclidean metric

Magnetometer = Electromagnetism + Elasticity

classical Electromagnetism
Vector fields: $\vec{B}, \vec{H}, \vec{J}, \ldots$
Vector analysis: div, curl , grad Assumes Euclidean space

Euclidean

 metricclassical Elasticity Displacement field \vec{u} Symmetric tensors ε, σ Assumes Euclidean space
\diamond Classical Elasticity and classical Electromagnetism assume a Euclidean metric
\diamond This assumption

- engineers background
- hides the central role of metric
- electromagnetic world and elasticity world cannot communicate (no common concepts, the door is locked)
- forbids clear electromechanical concepts (Maxwell stress tensor, electromagnetic forces)
- forbids clear sensitivity analysis (cf tomorrow)

Magnetometer = Electromagnetism + Elasticity

classical Electromagnetism
Vector fields: $\vec{B}, \vec{H}, \vec{J}, \ldots$
Vector analysis: div, curl , grad Assumes Euclidean space

Euclidean metric

classical Elasticity
Displacement field \vec{u} Symmetric tensors ε, σ Assumes Euclidean space
\diamond One could have done a classical introduction, boring,
\diamond We are going to open the door and see how the two worlds communicate
\diamond Closer to research
\diamond Define the metric tensor and demonstrate its fundamental role (giant step to understand curved spaces and general relativity)
\diamond Show that all physical quantities we need are tensors of various kinds
\diamond Finally, review the elastic part of the magnetometer model.

Elasticity

2 formulations for Elasticity
\diamond full general geometric approach (large strains, finite strain, nonlinear elasticity)
\diamond linear elasticity, infinitesimal strain: linearization of the latter (complicated \rightarrow simple)

www.quia.com, www.ifam.rwth-aachen.de

Pathway to tensors

This all relies on a chain of basic mathematical concepts
\diamond continuous medium (manifold)
\diamond curve
\diamond vector
\diamond covector
\diamond tensors

Manifold \rightarrow curve

Manifold:

\diamond Analogy: sponge
\diamond continuous set of points
\diamond no defined distance between points $<>$ rigid boby
\diamond no tearing, no creation of voids, ...
\diamond Infinitely many curves pass through each point P of Ω

Curve \rightarrow tangent vector

$$
\begin{aligned}
C(\lambda) & =\left\{x^{i}(\lambda)\right\}, \lambda \in[A, B] \\
& =\{x(\lambda), y(\lambda), z(\lambda)\} \\
\vec{V}(\lambda) & =\left\{\frac{d x^{i}}{d \lambda}(\lambda)\right\} \\
& =\left\{\frac{d x}{d \lambda}, \frac{d y}{d \lambda}, \frac{d z}{d \lambda}\right\} \\
& =\left\{V^{x}, V^{y}, V^{z}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\vec{r}(t) & =\left\{x^{i}(t)\right\}, t \in[A, B] \\
& =\{x(t), y(t), z(t)\} \\
\vec{v}(t) & =\left\{\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\} \\
& =\left\{v^{x}, v^{y}, v^{z}\right\}
\end{aligned}
$$

http://math.etsu.edu/multicalc/prealpha/Chap1/Chap1-7/9-7-1.gif http://i.stack.imgur.com/VOPuE.png

Curve \rightarrow tangent vector

\diamond Infinitely many curves pass through each point P of Ω
\diamond Each curve has its tangent vector $\vec{V}=\left\{V^{x}, V^{y}, V^{z}\right\}$ in P
\diamond the set of all tangent vectors at P is the tangent space $T_{P} \Omega$, a linear space
\diamond if the curve is a trajectory, and the curve parameter λ is the time t, the tangent vector is the velocity
\diamond Note the upper (contravariant) indices for vector components

Vector \rightarrow covector

\diamond A covector field is a quantity that makes sense when integrated over a curve (circulation)
\diamond Examples: force field \vec{f}, gravity field $m \vec{g}$, electric field \vec{E}, magnetic field \vec{H}

Mechanical work

 the curve $C\left(P_{A}, P_{B}\right)=\left\{x^{k}(t)\right\}$ is a trajectory from P_{A} to $P_{B}$$$
\begin{array}{rlr}
W & =\int_{C\left(P_{A}, P_{B}\right)} \vec{f} \cdot d \vec{C} & \text { conventional vector representation } \\
& =\int_{C\left(P_{A}, P_{B}\right)} f_{i} d C^{i} & \text { note the lower (covariant) indices for } \vec{f} \\
& =\int_{A}^{B} f_{i} \frac{d x^{i}}{d t} d t & \text { using the parametrisation of the curve, implicit sum }
\end{array}
$$

Vector \rightarrow covector

Potential gravitational energy

$$
\begin{aligned}
V & =\int_{C\left(P_{A}, P_{B}\right)} m \vec{g} \cdot d \vec{C} \\
& =\int_{C\left(P_{A}, P_{B}\right)} m g \operatorname{grad} z \cdot d \vec{C} \\
& =\int_{A}^{B} m g \frac{d z}{d x^{i}} \frac{d x^{i}}{d \lambda} d \lambda \\
& =m g\left(z_{B}-z_{A}\right)
\end{aligned}
$$

$$
\operatorname{grad} z=\vec{e}_{z}
$$

the gradient is a covector, cov. indices

Vector \rightarrow covector
 Ampere law

$$
\begin{aligned}
I & =\oint_{C} \vec{H} \cdot d \vec{C} & \vec{B}=\mu_{0} \vec{H}=\oint_{C} H_{i} d C^{i} \\
& =\oint_{C} H_{i} \frac{d x^{i}}{d \lambda} d \lambda=\int_{C}\left(H_{x} \frac{d x}{d \lambda}+H_{y} \frac{d y}{d \lambda}+H_{z} \frac{d z}{d \lambda}\right) d \lambda &
\end{aligned}
$$

http://agni.phys.iit.edu/ vpa/images/mag1.jpg,
https://c1.staticflickr.com/3/2481/3789856303_7d9f858c0a.jpg

Vector and covectors \rightarrow tensors

\diamond Vectors: velocities or tangent vectors of curves
\diamond Covectors: physical quantities that make sense when integrated over a curve or a trajectory
\diamond distinguished by covariant or contravariant indices
A vector: $\left\{V^{x}, V^{y}, V^{z}\right\}$
A covector: $\left\{\alpha_{x}, \alpha_{y}, \alpha_{z}\right\}$
\diamond covector $=$ first example of a tensor, the simplest one, a tensor with one vector argument and zero covector argument:

$$
\alpha(\vec{V})=\alpha_{i} V^{i} \in \mathbb{R}
$$

\diamond contraction of repeated indices, one covariant, one contravariant

Tensors: a general definition

\diamond Generalisation of the principle of contraction for m vector arguments and n covector arguments:

$$
T\left(\underset{\text { margs }}{\vec{V}, \ldots \vec{W}, \underset{\text { args }}{ }} \underset{, \ldots, \beta)}{ }=T_{i \ldots j}^{k} \ldots / V^{i} \ldots W^{j} \alpha_{k} \ldots \beta_{l}\right.
$$

\diamond Linearity for all arguments, e.g. for the first one

$$
T(a \vec{V}+b \vec{W}, \ldots)=a T(\vec{V}, \ldots)+b T(\vec{W}, \ldots)
$$

\diamond To the classroom: "Cite tensors..."
\diamond In tensor analysis, tensors are NOT always 2 dimensional arrays of numbers!
\diamond Scalars, vectors and covectors are the simplest tensor types

Tensors: transformation matrices

\diamond Tensors with one vector argument $(m=1)$ and one covector argument ($n=1$) are transformation matrices

$$
T(\vec{V}, \alpha)=T_{i}^{k} V^{i} \alpha_{k}
$$

\diamond They have 9 independent components T_{i}^{k} (9 terms at the right-hand side of the above identity, due to implicit sums)
\diamond Contracting the transformation matrix with its vector argument, $T(\vec{V},$.$) ,$ gives a tensor with one covector argument, i.e. a new vector
\diamond Contracting the transformation matrix with its covector argument, $T(., \alpha)$, gives a tensor with one vector argument, i.e. a new covector
\diamond Hence the name transformation matrix. Summary so far

m	n	
0	0	scalar field
0	1	vector field
1	0	covector field
1	1	transformation matrix

Tensors with several arguments of the same nature

\diamond Tensors with 2 vector arguments have also 9 independent components $T_{i j}$ (like transformations matrices)

$$
T(\vec{V}, \vec{W})=T_{i j} V^{i} W^{j}
$$

\diamond When there are at least two arguments of the same nature, the order of the arguments matters in general

$$
T(\vec{V}, \vec{W})=T_{i j} V^{i} W^{j} \neq T(\vec{W}, \vec{V})=T_{i j} W^{i} V^{j}
$$

\diamond The behaviour under swapping arguments of the same nature allows to define very important tensor subclasses: symmetric and antisymmetric tensors

Symmetric tensors

\diamond A symmetric tensor verifies

$$
T(\vec{V}, \vec{W})=T(\vec{W}, \vec{V}) \quad \forall \vec{V}, \vec{W}
$$

\diamond The above condition holds in particular for the basis vectors $\vec{e}_{x}=\left\{\delta_{x}^{i}\right\}=\{1,0,0\}, \vec{e}_{y}=\left\{\delta_{y}^{i}\right\}=\{0,1,0\}, \vec{e}_{z}=\left\{\delta_{z}^{i}\right\}=\{0,0,1\}$.
\diamond Hence

$$
T\left(\vec{e}_{x}, \vec{e}_{y}\right)=T\left(\vec{e}_{y}, \vec{e}_{x}\right) \Rightarrow T_{x y}=T_{y x}
$$

\diamond This yields in total 3 non trivial independent relationships

$$
T_{x y}=T_{y x} \quad, \quad T_{y z}=T_{z x} \quad, \quad T_{z x}=T_{x z}
$$

\diamond Symmetric tensors with 2 vector arguments have thus only 6=9-3 independent components.
\diamond Examples: metric tensor g, deformation tensor ε

Antisymmetric tensors

\diamond Another important class of tensors are the antisymmetric tensor:

$$
T(\vec{V}, \vec{W})=-T(\vec{W}, \vec{V}) \quad \forall \vec{V}, \vec{W}
$$

\diamond Components with repeated indices of antisymmetric tensors always vanish

$$
T\left(\vec{e}_{x}, \vec{e}_{x}\right)=-T\left(\vec{e}_{x}, \vec{e}_{x}\right) \Rightarrow T_{x x}=-T_{x x} \Rightarrow T_{x x}=0
$$

\diamond Antisymmetry yields in total 6 non trivial independent relationships

$$
\begin{gathered}
T_{x x}=0, \quad T_{y y}=0, \quad T_{z z}=0 \\
T_{x y}=-T_{y x}, \quad T_{y z}=-T_{z x}, \quad T_{z x}=-T_{x z}
\end{gathered}
$$

\diamond Antisymmetric tensors with 2 vector arguments have thus 3=9-6 independent components, like vectors and covectors.
\diamond Examples: current density \vec{J}, magnetic flux density \vec{B}

Flux density

e_{i}

$e_{i} \wedge e_{j}$

$e_{i} \wedge e_{j} \wedge e_{k}$
\diamond A flux density associates a number to a facet made of 2 nonparallel vectors
\diamond The flux is zero if the two vectors are parallel
\diamond The flux changes sign if the vectors are swapped
$\diamond \Rightarrow$ a flux density is an antisymmetric tensor with 2 vector arguments ($m=2, n=0$)
\diamond It has 3 components like a vector or a covector...

Volume density

\diamond A volume density associates a number to a parallelepiped made of 3 nonparallel vectors
\diamond The number is zero if the any two vectors out of the three are parallel (flat parallelepiped)
\diamond The number changes sign if any two vectors are swapped (negative volume according to the right-hand rule)
$\diamond \Rightarrow$ a volume density is an antisymmetric tensor with 3 vector arguments ($m=3, n=0$)
\diamond How many independent components has such a tensor?

Volume density

\diamond A tensor with 3 vector arguments $(m=3, n=0)$ has 27 independent components (27 terms in the sum):

$$
T(\vec{U}, \vec{V}, \vec{W})=T_{i j k} U^{i} V^{j} W^{k}
$$

\diamond A volume density ρ is a fully antisymmetric tensor with 3 vector arguments

$$
\rho(\vec{U}, \vec{V}, \vec{W})=-\rho(\vec{V}, \vec{U}, \vec{W})=-\rho(\vec{U}, \vec{W}, \vec{V}) \ldots \quad \forall \vec{U}, \vec{V}, \vec{W}
$$

and so on for any argument permutation
\diamond All 21 components with a repeated index vanish: e.g. $\rho_{x x y}=0$
\diamond Only 6 components exist with no repeated indices, for which one has 5 relationships

$$
\rho_{x y z}=\rho_{y z x}=\rho_{z x y}=-\rho_{x z y}=-\rho_{z y x}=-\rho_{y x z}
$$

\diamond Antisymmetric tensors with 3 vector arguments have thus only 1 independent components, like a scalar field

Differential forms

\diamond Differential forms of order m are completely antisymmetric tensors with m vector arguments and zero covector arguments
\diamond Originate from the theory of integration over geometrical regions
\diamond Stokes theorem: duality with the boundary operator ∂

$$
\begin{aligned}
& \int_{\Omega} \mathrm{d} \alpha=\int_{\partial \Omega} \alpha \\
& \int_{C\left(P_{A}, P_{B}\right)} \operatorname{grad} f \cdot d \vec{C}=\left.f\right|_{\partial C\left(P_{A}, P_{B}\right)}=f\left(P_{B}\right)-f\left(P_{A}\right) \\
& \int_{S} \operatorname{curl} \vec{f} \cdot d \vec{S}=\int_{\partial S} \vec{f} \cdot d \partial \vec{S} \\
& \int_{V} \operatorname{div} \vec{f} d V=\int_{\partial V} \vec{f} \cdot d \partial \vec{V}=\int_{\partial V} \vec{f} \cdot \vec{n} d \partial V
\end{aligned}
$$

\diamond Accurate mathematical representation of electromagnetic fields

Differential forms: shape functions

m		
0	0-form	Scalar function
1	1-form	covector field, circulation density
2	2-form	flux density
3	3-form	volume density

0 -forms: shape functions

m		
0	0 -form	scalar function
1	1-form	covector field, circulation density
2	2-form	flux density
3	3-form	volume density

The value of the shape function v_{i} of node i of the mesh is 1 at node i, and zero at all other nodes of the mesh.

1-forms: shape functions

m		
0	0-form	scalar function
1	1-form	covector field, circulation density
2	2-form	flux density
3	3-form	volume density

The circulation of the shape function k is 1 over edge k of the mesh, and zero over all other edges of the mesh.

http://www.iue.tuwien.ac.at/phd/nentchev/node40.html, http://www.iue.tuwien.ac.at/phd/nentchev/node43.html

2-forms: shape functions

m		
0	0-form	scalar function
1	1-form	covector field, circulation density
2	2-form	flux density
3	3-form	volume density

The flux of the shape function k is 1 across facet k of the mesh, and zero across all other facets of the mesh.

3-forms: shape functions

m		
0	0-form	scalar function
1	1-form	covector field, circulation density
2	2-form	flux density
3	3-form	volume density

The integral of the shape function k is 1 over element k of the mesh, and zero over all other elements of the mesh.
Draw it. . .

Tensors: overview

m	n	$\mathrm{~S} / \mathrm{A}$	
0	0		scalar field
0	1		vector field
1	0		covector field
1	1		transformation matrix
2	0	S	metric tensor g, deformation tensor ε
2	0	A	flux density \vec{B}, displacement current \vec{D}
0	2	S	(stress tensor σ)
3	0	A	volume density ρ

Tensors: partial antisymmetrization

\diamond Partially antisymmetrized tensors are also possible
\diamond The force density $\rho^{\vec{F}}$ is a covector valued volume density

$$
\vec{F}=\int_{V}{ }^{\vec{F}} d V
$$

\diamond It is a tensor with 4 vector arguments, antisymmmetrised with respect to the first 3 only.
\diamond The stress tensor σ is a symmetric tensor with two covector arguments in

$$
W=\sigma: \varepsilon=\sigma^{i j} \varepsilon_{i j}
$$

\diamond But the stress tensor σ is a tensor with three vector arguments, antisymmetrized over the first 2, when regarded as a surface density of force, or a flux of momentum.

$$
\vec{F}=-\int_{S} \sigma \cdot d \vec{S}=-\int_{S} \sigma \cdot \vec{n} d S
$$

Tensors: overview

\diamond Physical quantities are tensor fields with well-defined arguments and symmetry properties
\diamond Partially antisymmetrized tensors are also possible
\diamond Many confusions in Euclidean space: vector, covectors, flux densities, covector densities have all 3 components, and are all regarded as "vectors" in vector analysis, despite their very different tensorial natures

Elasticity: equilibrium equation

$$
\begin{array}{rlr}
\qquad \vec{F}=-\int_{S} \sigma \cdot d \vec{S}=-\int_{S} \sigma \cdot \vec{n} d S \tag{*}\\
\vec{F} & =\int_{V} \rho^{\vec{F}} d V & \text { force density } \\
& =-\int_{\partial V} \sigma \cdot \vec{n} d \partial V & \text { from (*) } \\
& =-\int_{V} \operatorname{div} \sigma d V & \text { Stokes theorem }
\end{array}
$$

Hence, for free, the equilibrium equation which is a purely gometric statement, directly derived from the geometrical nature of σ and of force densities:

$$
\operatorname{div} \sigma+\rho^{\vec{F}}=0
$$

Finite strain elasticity: placement map

Finite strain elasticity: placement map

\diamond Material manifold: sponge
\diamond Euclidean space: ruler, notion of distance between points
\diamond placement map χ : description of motion

Metric tensor

\diamond The metric tensor g is a symmetric tensor with two vector arguments
\diamond The coefficients $g_{i j}(x, y, z)$ may depend on position (curved space)
\diamond Defines the distance on a manifold
\diamond Used in mesh generation also

Length of a curve

General case

\diamond Consider a curve $C\left(P_{A}, P_{B}\right)$ from P_{A} to P_{B} with tangent vector \vec{V}
\diamond The idea is to integrate a unit tangent vector along the curve to measure its length
\diamond Normalized tangent vector, using the metric tensor g

$$
\vec{t}=\frac{\vec{V}}{\sqrt{g(\vec{V}, \vec{V})}}
$$

\diamond Density of curve length is the covector $g(\vec{t})$, using again g
\diamond Length of the curve

$$
L_{C}=\int_{C\left(P_{A}, P_{B}\right)} g(\vec{t})
$$

Distance between two points P_{A} and P_{B}

\diamond Among all curves between P_{A} and P_{B}, the geodesic is the one with the minimal length
\diamond The distance between P_{A} and P_{B} is the length of the geodesic

$$
d\left(P_{A}, P_{B}\right)=\min _{C} L_{C}=\min _{C} \int_{C\left(P_{A}, P_{B}\right)} g(\vec{t})
$$

Distance between two points P_{A} and P_{B}

Euclidean case

In the Euclidean space, everything is more simple
$\diamond g_{i j}=\delta_{i j}$ using Cartesian coordinates
\diamond Geodesics are straigth lines
\diamond The space is flat, distance depends only on end points

$$
d\left(P_{A}, P_{B}\right)=\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}+\left(z_{B}-z_{A}\right)^{2}}
$$

$\diamond \vec{t}=\frac{\vec{v}}{|\vec{v}|}$
\diamond and the metric appears explictly nowhere...

Placement map χ

\diamond Material manifold
\diamond Euclidean space
\diamond Placement map χ : description of motion
\diamond the placement map is a smooth invertible mapping
\diamond It is sufficient to map all tensor quantities as well

Finite strain, another byproduct of g

Cauchy-Green tensor: \rightarrow distance in the reference configuration

$$
\begin{aligned}
C & =\chi g \\
& =F^{T} F
\end{aligned}
$$

a non trivial metric tensor
F is the jacobian matrix of χ

Green tensor

$$
\begin{array}{rlr}
E & =\frac{1}{2}(\chi g-g) & \text { general expression } \\
& =\frac{1}{2}(C-\mathbb{I}) & \text { in Euclidean space, } g=\mathbb{I}, g_{i j}=\delta_{i j} \\
E_{i j} & =\frac{1}{2}\left(\frac{d u^{k}}{d x^{j}} \delta_{k i}+\frac{d u^{k}}{d x^{i}} \delta_{k j}+\frac{d u^{k}}{d x^{i}} \frac{d u^{k}}{d x^{j}}\right) & \delta_{k i} \text { factors needed to balance indices }
\end{array}
$$

Infinitesimal strain: linearisation of E for small deformations

$$
\varepsilon_{i j}=\frac{1}{2}\left(\frac{d u^{k}}{d x^{j}} \delta_{k i}+\frac{d u^{k}}{d x^{i}} \delta_{k j}\right) \stackrel{!}{=} \frac{1}{2}\left(\frac{d u^{i}}{d x^{j}}+\frac{d u^{j}}{d x^{i}}\right)=\frac{1}{2}\left((\nabla u)+(\nabla u)^{T}\right)
$$

Hooke law

\diamond Last piece of the elastic model: the constitutive relationship $\sigma(\nabla u)$ or $\sigma(\varepsilon)$
\diamond We now proceed in Euclidean space, and stop balancing covariant and contravariant indices (classical elasticity). Implicit summation remains on repeated indices.
\diamond Classically, Hooke tensor with 81 components, then simplifying assumptions

$$
\sigma_{i j}=H_{i j k \mid} \varepsilon_{k l}
$$

\diamond A more intuitive approach is to decompose the 9 dimensional space of 3×3 tensors into relevant geometric subspaces
\diamond Let A be a 3×3 tensor, \mathbb{I} be the identity tensor. One has

$$
\underset{\operatorname{dim}=9}{A}=\underset{\operatorname{dim}=5}{\operatorname{dev}(A)}+\underset{\operatorname{Iim}=1}{\mathbb{v o l}(A)}+\underset{\operatorname{dim}=3}{\operatorname{antisym}}(A)
$$

Hooke law

$$
\underset{\operatorname{dim}=9}{A}=\underset{\operatorname{dim}=5}{\operatorname{dev}(A)}+\underset{\operatorname{dim}=1}{\mathbb{I} \operatorname{vol}(A)}+\underset{\operatorname{dim}=3}{\operatorname{antisym}}(A)
$$

with

$$
\begin{array}{rlr}
\operatorname{sym}(A) & =\frac{1}{2}\left(A+A^{T}\right) & \\
\text { antisym }(A) & =\frac{1}{2}\left(A-A^{T}\right) & \text { rotations } \\
\operatorname{vol}(A) & =\frac{1}{3} \sum_{k} A_{k k}=\frac{1}{3} \operatorname{trace}(A) & \text { compression/dilatation } \\
\operatorname{dev}(A) & =\operatorname{sym}(A)-\mathbb{I} \operatorname{vol}(A) & \text { shear }
\end{array}
$$

Hooke law (linear isotropic material) is then just a linear relation between the different subspaces:

$$
\begin{aligned}
\operatorname{vol}(\sigma) & =3 K \operatorname{vol}(\nabla u) \\
\operatorname{dev}(\sigma) & =2 G \operatorname{dev}(\nabla u) \\
\text { antisym }(\sigma) & =0
\end{aligned}
$$

$3 K=$ bulk modulus
$2 G=$ shear modulus rotations yield no stress

Hooke law

$$
\begin{aligned}
\sigma & =\operatorname{dev}(\sigma)+\mathbb{I} \operatorname{vol}(\sigma)+\operatorname{antisym}(\sigma) \\
& =2 G \operatorname{dev}(\nabla u)+3 K \mathbb{I} \operatorname{vol}(\nabla u)+0 \\
& =(3 K-2 G) \mathbb{I} \operatorname{vol}(\nabla u)+2 G \operatorname{sym}(\nabla u) \\
& =3 \lambda \mathbb{I} \operatorname{vol}(\nabla u)+2 \mu \operatorname{sym}(\nabla u) \quad \text { Lamé coefficients } \\
& =\lambda \mathbb{I} \operatorname{trace}(\nabla u)+2 \mu \operatorname{sym}(\nabla u)
\end{aligned}
$$

$$
3 \lambda=3 K-2 G=\frac{3 E \nu}{(1+\nu)(1-2 \nu)}
$$

$$
\begin{aligned}
2 \mu=2 G & =\frac{E}{1+\nu} \\
-2 \mu=3 K & =\frac{E}{1-2 \nu} \\
\lambda+2 \mu & =\frac{E(1-\nu)}{(1+\nu)(1-2 \nu)}
\end{aligned}
$$

Inverse Hooke law

$$
\begin{aligned}
\operatorname{vol}(\nabla u) & =\frac{1}{3 K} \operatorname{vol}(\sigma) & 3 K=\text { bulk modulus } \\
\operatorname{dev}(\nabla u) & =\frac{1}{2 G} \operatorname{dev}(\sigma) & 2 G=\text { shear modulus } \\
\text { antisym }(\sigma) & =0 & \text { rotations yield no stress }
\end{aligned}
$$

$$
\begin{aligned}
\nabla u & =\operatorname{dev}(\nabla u)+\mathbb{I} \operatorname{vol}(\nabla u)+\operatorname{antisym}(\nabla u) \\
& =\frac{1}{2 G} \operatorname{dev}(\sigma)+\frac{1}{3 K} \mathbb{I} \operatorname{vol}(\sigma)+\operatorname{antisym}(\nabla u) \\
& =\left(\frac{1}{3 K}-\frac{1}{2 G}\right) \mathbb{I} \operatorname{vol}(\sigma)+\frac{1}{2 G} \sigma+\operatorname{antisym}(\nabla u)
\end{aligned}
$$

Inverse Hooke law

$$
\begin{aligned}
\varepsilon=\nabla u-\operatorname{antisym}(\nabla u) & =\left(\frac{1}{3 K}-\frac{1}{2 G}\right) \mathbb{I} \operatorname{vol}(\sigma)+\frac{1}{2 G} \sigma \\
& =-\frac{\nu}{E} \operatorname{trace}(\sigma) \mathbb{I}+\frac{1+\nu}{E} \sigma
\end{aligned}
$$

$\diamond \nabla u$ cannot be expressed uniquely from σ
$\diamond \operatorname{antisym}(\nabla u)$ must be obtained another way
\diamond Lagrange multiplier in stress formulation

Magnetometer: Exercise 1

\diamond Use course notes to write down Hooke law under the matrix form

$$
\left(\begin{array}{l}
\sigma_{x x} \\
\sigma_{x y} \\
\sigma_{x z} \\
\sigma_{y x} \\
\sigma_{y y} \\
\sigma_{y z} \\
\sigma_{z x} \\
\sigma_{z y} \\
\sigma_{z z}
\end{array}\right)=(?)\left(\begin{array}{l}
\frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial y} \\
\frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} \\
\frac{\partial w}{\partial y} \\
\frac{\partial w}{\partial z}
\end{array}\right)
$$

\diamond Where is this to be found in the Magetometer model files (filename, line number)?
\diamond Check and compare.

Magnetometer: Exercise 2

\diamond Where is the coupling magnetic force defined in the Magetometer model files (filename, line number)?
\diamond Write down its algebraic expression.
\diamond What is the name of this force?

Magnetometer: Exercise 3

\diamond The magnetometer bar can be regarded as a beam with rectangular cross section and flexural rigidity $E I=E a b^{3} / 12$, where a is the width and b the thickness of the beam.
\diamond Find different ways to double the rigidity of the beam.
\diamond Make a static Onelab analysis and compare the obtained deflections with the reference situation.

Magnetometer: Exercise 4

\diamond Still in the static case, how can you double the deflection by modifying the applied voltage?
\diamond How can you double the deflection by modifying electric conductivity of the magnetometer bar?

Optimization

Design problem

Statement of the design problem

- Starting point: existing CAD model of a bridge

- Use FEM to account for the real geometry

- "Optimal design" should find automatically the structure that minimizes the bridge deflection (for a given load F and support conditions)!

Selection of design variables

Shape optimization

- Start with an existing CAD (from a previous design)

- Design variables are the parameters of existing CAD
- radius of a circle
- major/minor axis of ellipse
- position of nurbs control point

Shape optimization

- Each value of design variables provides a novel geometry that must be re-meshed

- A FEM analysis can then be applied to obtain the physical solution for the new geometry

Topology optimization

- Start from scratch with a block of material (steel)
- with know loading and support conditions
- without any initial guess of the initial structure

- What would be the "best" structure that
- respects the loading and support conditions?
- minimises the deflection?
- uses only a given fraction of the initial volume?

Topology optimization

- Typically define 1 design variable/ FE as the material (e.g. steel) density that can be either 0 (void) or 1 (solid)

- In practice there are millions of FE for finer mesh
- Impossible to check each combination since a FEM analysis is required for each of them
- Relaxation of the problem: design variables vary continuously from 0 to 1 -> much more efficient!

FEM-analysis setting

Analysis setting - FEM model

- The physical behavior of the system is provided by PDEs written in a strong form (linear elastic model)

$$
\begin{aligned}
\operatorname{div} \sigma(\epsilon)+\mathbf{g} & =0 \quad \text { in } \Omega \\
\sigma(\epsilon) & =C_{i j k l} \epsilon_{k l} \mathbf{e}_{i} \mathbf{e}_{j}^{T} \quad \text { in } \Omega \\
\mathbf{z} & =0 \quad \text { on } \partial \Omega
\end{aligned}
$$

- The problem is equivalently written in a weak form with a residual
$r\left(\tau, \mathbf{z}^{\star}, \bar{z}\right) \equiv \int_{\Omega}\left(\sigma\left(\epsilon^{\star}\right): \nabla \bar{z}-\mathbf{g} \cdot \bar{z}\right) \mathbf{d} \Omega=0, \quad \forall \bar{z} \in Z_{z}^{0}$
- The solution z^{*} of the system depends implicetly and nonlinearly on design variables, i.e. on geometry through the FE mesh.

Analysis setting - FEM model

- Application of FEM in a mesh with N nodes, leads to the solution of linear system of algebraic equations

$$
\overline{\mathbf{z}}^{T}\left(\mathbf{K}(\tau) \mathbf{z}^{\star}-\mathbf{g}(\tau)\right)=0, \forall \overline{\mathbf{z}} \in Z_{z}^{0}
$$

- $\mathrm{z}(\mathrm{N} \times 1)$ is the unknown field vector defined in each node of the FE mesh
- $\mathrm{K}(\mathrm{NxN})$ is the stiffness matrix of the physical problem
- $\mathrm{g}(\mathrm{N} \times 1)$ is a loading term (takes into account sources)

Analysis setting - FEM model

- Application of FEM in a mesh with N nodes, leads to the solution of (non)linear system of algebraic equations

$$
\overline{\mathbf{z}}^{T}\left(\mathbf{K}(\tau) \mathbf{z}^{\star}(\tau)-\mathbf{g}(\tau)\right)=0, \forall \overline{\mathbf{z}} \in Z_{z}^{0}
$$

- $z(N \times 1)$ is the unknown field vector defined in each node of the FE mesh
- $\mathrm{K}(\mathrm{NxN})$ is the stiffness matrix of the physical problem
- $\mathrm{g}(\mathrm{N} \times 1)$ is a loading term (takes into account sources)

Analysis setting - FEM model

- FEM leads to the solution of (non)linear system of algebraic equations (in a mesh with N nodes)

$$
\overline{\mathbf{z}}^{T}\left(\mathbf{K}(\tau) \mathbf{z}^{\star}(\tau)-\mathbf{g}(\tau)\right)=0, \forall \overline{\mathbf{z}} \in Z_{z}^{0}
$$

- where $z(N \times 1)$ is the unknown field vector
- $\mathrm{K}(\mathrm{NxN})$ is the stiffness matrix of the physical problem
- $\mathrm{g}(\mathrm{N} \times 1)$ is a loading term (takes into account sources)
- The system is usually solved using the NewtonRaphson method

Mathematical formulation of the optimization problem

Optimization Problem Formulation

- Find the n design variables τ that
- minimize the internal energy of the structure
- while using only a fraction α of the initial volume V_{0}

$$
\begin{array}{ll}
\min _{\tau} & \frac{1}{2} \int_{\Omega} \sigma\left(\epsilon^{\star}\right): \epsilon^{\star} \mathbf{d} \Omega \\
\text { s.t. } & V(\tau) \leq \alpha V_{0} \\
& \tau_{i}^{\min } \leq \tau_{i} \leq \tau_{i}^{\max }, i=1, \ldots, n \\
& r\left(\tau, \mathbf{z}^{\star}, \overline{\mathbf{z}}\right)=0, \forall \overline{\mathbf{z}} \in Z_{z}^{0}
\end{array}
$$

- Consideration of real CAD with the FEM constraint!
- Bound constraints on design variables.

Optimization Problem Formulation

- For each design variable (or configuration) τ
- Mesh the structure (for shape optimization)
- Run FEM analysis (time consuming) : z^{*}
- evaluate objective and constraints (postprocessing)

$$
\begin{array}{ll}
\min _{\tau} & \frac{1}{2} \int_{\Omega} \sigma\left(\epsilon^{\star}\right): \epsilon^{\star} \mathbf{d} \Omega \\
\text { s.t. } & V(\tau) \leq \alpha V_{0} \\
& \tau_{i}^{\min } \leq \tau_{i} \leq \tau_{i}^{\max }, i=1, \ldots, n \\
& r\left(\tau, \mathbf{z}^{\star}, \overline{\mathbf{z}}\right)=0, \forall \overline{\mathbf{z}} \in Z_{z}^{0}
\end{array}
$$

- Implicit and nonlinear dependence of z^{*} on τ
- each function depends implicitely and nonlinearly on τ
- time consuming evaluation since FEM is required
- Practically, there can be mil. of τ and inequalities!

Optimizer - resolution of the optimization problem

Optimizer

- The functions in the optimization problem depend implicitly and nonlinearly on design variables (possibly very large number).

- How can we find the minimum of that function (assuming that we have only 1 design variable)?

Gradient-free optimizer

- Naturally converges to the global optimum!
- \#function evaluations for a naïve method is $\frac{n!}{n!(n!-m!)}$
- For a small optimization problem,

$$
\begin{aligned}
& n=10, m=5: 252 \\
& n=20, m=10: 185000 \\
& n=100, m=50: 10^{29}
\end{aligned}
$$

- Impossible to explore the whole space with a naive method!
- Clever algorithms that can explore the design space are required!

Gradient-based optimizer

- Idea: At a given point τ^{i} run a FEM analysis to evaluate the function and its derivative τ^{i}.
- Then compute an explicit model (sort of Taylor) of the function (in which function evaluations do not take time compared to FEM!).

- The model is ${ }^{\tau^{1}}$ built ${ }^{\tau^{2}}$ as convex: $\stackrel{\tau^{*}}{\tau^{*}}{ }^{\tau}{ }^{\tau}$ to find its minimum (conjugate gradient, or interior point).

Gradient-based optimizer

- Once the optimum of the explicit model at a given point is found, a new explicit model is built at that point and the procedure is repeated until convergence to the real optimum.

- Stay always feasible during iterations and higher convergence rate than gradient-free methods!

Application: optimal design of a bridge

Optimal design of a bridge

- Shape optimization approach

- Topology optimization approach (0-blue, 1-red)

- Fortunately the classical bridge is recovered!

Sensitivity analysis

Introduction

- "Sensitivity" is the derivative of a performance function f (appearing in the optimization problem) w.r.t. a design variable

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau} f\left(\tau, \mathbf{z}^{\star}(\tau)\right)=?
$$

- The performance function depends on the solution \mathbf{z}^{\star} of the physical problem (at equilibrium)

$$
\overline{\mathbf{z}}^{T}\left(\mathbf{K}(\tau) \mathbf{z}^{\star}(\tau)-\mathbf{g}(\tau)\right)=0, \forall \overline{\mathbf{z}} \in Z_{z}^{0}
$$

- \mathbf{K}^{-1} is a NxN matrix with N number of nodes in mesh
-> obtained during the resolution of the problem!

Finite difference method

- First order Taylor approximation of $f\left(\tau, \mathbf{z}^{\star}(\tau)\right)$

$$
\frac{\mathrm{d} f}{\mathrm{~d} \tau}\left(\tau, \mathbf{z}^{\star}\right) \approx \frac{f(\tau+\delta \tau, \underbrace{\star}_{\tau+\delta \tau})-f\left(\tau, \mathbf{z}^{\star}\right)}{\delta \tau}
$$

- What is $\left(\mathbf{z}_{\tau+\delta \tau}^{\star}\right)$. Solve anew the linear problem with the perturbed geometry (with perturbed mesh)

$$
\overline{\mathbf{z}}^{T}\left(\mathbf{K}(\tau+\delta \tau) \mathbf{z}_{\tau+\delta \tau}^{\star}-\mathbf{g}(\tau+\delta \tau)\right)=0, \forall \overline{\mathbf{z}} \in Z_{z}^{0}
$$

- Pros/Cons
- Simplest method to compute the sensitivity
- Very slow when the $\# \tau$ is large since $\# \tau$ additional FEM are required!

Analytic approach - direct method

- Sensitivity of the performance function

$$
\left.\frac{\mathrm{d} f}{\mathrm{~d} \tau}\left(\tau, \mathbf{z}^{\star}\right)=\frac{\partial f}{\partial \tau}\left(\tau, \mathbf{z}^{\star}\right)+\frac{\partial f}{\partial z^{\star}} \frac{\mathrm{d} \mathbf{z}^{\star}}{\mathrm{d} \tau}\right) ?
$$

- Requires determining $\frac{\mathrm{dz}^{\star}}{\mathrm{d} \tau}$

$$
\overline{\mathbf{z}}^{T} \frac{\mathrm{~d}}{\mathrm{~d} \tau}\left(\mathbf{K}(\tau) \mathbf{z}^{\star}(\tau)-\mathbf{g}(\tau)\right)=0, \forall \overline{\mathbf{z}} \in Z_{z}^{0}
$$

- We end up with a linear system for $\frac{\mathrm{dz}^{\star}}{\mathrm{d}}$

$$
\overline{\mathbf{z}}^{T}\left(\mathbf{K}(\tau) \frac{\left.\left.\frac{\mathrm{z} \mathbf{z}^{\star}}{\mathrm{d} \tau}\right)+\left(\frac{\partial \mathbf{K}}{\partial \tau} \mathbf{z}^{\star}-\frac{\partial \mathbf{g}}{\partial \tau}\right)\right) \stackrel{\overline{\mathrm{d} \tau}}{=} 0, \forall \overline{\mathbf{z}} \in Z_{z}^{0} .{ }^{0} .}{}\right.
$$

- \mathbf{K}^{-1} known as equilibrium of physical system enforced
- with a loading depending only on design variable

Analytic approach - adjoint method

- Sensitivity of the performance function

$$
\left.\frac{\mathrm{d} f}{\mathrm{~d} \tau}\left(\tau, \mathbf{z}^{\star}\right)=\frac{\partial f}{\partial \tau}\left(\tau, \mathbf{z}^{\star}\right)+\frac{\partial f}{\partial z^{\star}} \frac{\mathrm{d} \mathbf{z}^{\star}}{\mathrm{d} \tau}\right) ?
$$

- $\quad \frac{\mathrm{d} \mathbf{z}^{\star}}{}$ is obtained from the direct method

$$
\left.\frac{\mathrm{d} \mathbf{z}^{\star}}{\mathrm{d} \tau}\right)=\mathbf{K}^{-1}\left(\frac{\partial \mathbf{K}}{\partial \tau} \mathbf{z}^{\star}(\tau)-\frac{\partial \mathbf{g}}{\partial \tau}\right)
$$

- The latter is injected into the sensitivity equation

$$
\begin{aligned}
\frac{\mathrm{d} f}{\mathrm{~d} \tau}\left(\tau, \mathbf{z}^{\star}\right) & =\frac{\partial f}{\partial \tau}\left(\tau, \mathbf{z}^{\star}\right) \\
& +\frac{\partial f}{\partial \mathbf{z}^{\star}} \cdot \mathbf{K}^{-1}\left(\frac{\partial \mathbf{K}}{\partial \tau} \mathbf{z}^{\star}(\tau)-\frac{\partial \mathbf{g}}{\partial \tau}\right)
\end{aligned}
$$

Analytic approach - adjoint method

- Derivative of the function

$$
\frac{\mathrm{d} f}{\mathrm{~d} \tau}\left(\tau, \mathbf{z}^{\star}\right)=\frac{\partial f}{\partial \tau}\left(\tau, \mathbf{z}^{\star}\right)+\lambda \lambda^{\prime}\left(\frac{\partial \mathbf{g}}{\partial \tau}-\frac{\partial \mathbf{K}}{\partial \tau} \mathbf{z}^{\star}\right)
$$

- Where λ is the solution of the linear adjoint system

$$
\bar{\lambda}^{T}\left(\mathbf{K} \lambda-\frac{\partial f}{\partial \mathbf{z}}\left(\mathbf{z}^{\star}\right)\right)=0, \forall \bar{\lambda} \in Z_{\lambda}^{0}
$$

- \mathbf{K}^{-1} known as equilibrium of physical system enforced
- with a loading depending only on the function

Discussion (real problem: $\# \tau \gg, \# f \gg$)

- Direct method

$$
\frac{\mathrm{d} f}{\mathrm{~d} \tau}\left(\tau, \mathbf{z}^{\star}\right)=\frac{\partial f}{\partial \tau}\left(\tau, \mathbf{z}^{\star}\right)+\frac{\partial f}{\partial z^{\star}}\left(\frac{\mathbf{z}^{\star}}{\mathrm{d} \tau}\right)
$$

- Back-substitution for each design variable

$$
\overline{\mathbf{z}}^{T}\left(\mathbf{K}(\tau)\left(\frac{d \mathbf{z}^{\star}}{\mathrm{d} \tau}\right)+\left(\frac{\partial \mathbf{K}}{\partial \tau} \mathbf{z}^{\star}-\frac{\partial \mathbf{g}}{\partial \tau}\right)\right)=0, \forall \overline{\mathbf{z}} \in Z_{z}^{0}
$$

- Use only when $\# \tau \ll \# f$!
- Adjoint method

$$
\frac{\mathrm{d} f}{\mathrm{~d} \tau}\left(\tau, \mathbf{z}^{\star}\right)=\frac{\partial f}{\partial \tau}\left(\tau, \mathbf{z}^{\star}\right)+\lambda^{\tau}\left(\frac{\partial \mathbf{g}}{\partial \tau}-\frac{\partial \mathbf{K}}{\partial \tau} \mathbf{z}^{\star}\right)
$$

- Back-substitution for each performance function

$$
\bar{\lambda}^{T}\left(\mathbf{k} \lambda \frac{\partial f}{\partial \mathbf{z}}\left(\mathbf{z}^{\star}\right)\right)=0, \forall \bar{\lambda} \in Z_{\lambda}^{0}
$$

- Use only when $\# \tau \gg \# f$!
- \mathbf{K}^{-1} known as equilibrium of physical system enforced!

Tutorial - Shape optimization of the magnetometer fundamental frequency

Physical problem

- Eigenmode at a given f_{0} frequency

- Design problem
- change the existing geometry
- in order to set f_{0} to a desired frequency f_{0}^{d}
- How can we do this?

Shape optimization

- Choice of design variable(s)
- Support length, or width, or position?
- Relevant variables should give high sensitivity!
- Formulation of the optimization problem
- First try

$$
\min _{\tau_{\min } \leq \tau \leq \tau_{\max }}\left|f_{0}(\tau)-f_{0}^{d}\right|
$$

- Second try

$$
\min _{\tau_{\min } \leq \tau \leq \tau_{\max }}\left(f_{0}(\tau)-f_{0}^{d}\right)^{2}
$$

Shape optimization

- Solve the unconstrained optimization problem for τ set as support position

$$
\min _{\tau_{\min } \leq \tau \leq \tau_{\max }}\left(f_{0}(\tau)-f_{0}^{d}\right)^{2}
$$

- The problem is solved with the onelab-based optimization code written in Python (optdriver.py).
- Hint: check graphically if the optimizer finds the correct optimum by plotting the objective.

Onelab-based optimization

Optimization algorithm: (handle both shape and topology optimization)
Initialize design variables (user input)
Loop (until convergence to an optimum) ...

- Set the CAD (design variables) and mesh the CAD
- Analysis (FEM): evaluate performance functions
- Sensitivity analysis (FEM): evaluate the gradient of performance functions
- Call optimizer: update the design variables

Onelab-based optimization (Gmsh/GetDP)

- Define the objective as a function (.pro) and add the desired fundamental frequency in onelab database

```
Function {
    // desired fundamental frequency (onelab parameter)
    DefineConstant[
        f0d = {1e5, Name StrCat("Desired fundamental frequency [Hz]")}
    ];
    // fundamental frequency
    f0[] = $EigenvalueReal/(2*Pi);
    // objective function
    objective[] = SquNorm[ f0[] - f0d];
}
```


Onelab-based optimization (Gmsh/GetDP)

- Call the objective function "objective[]" in the postprocessing associated with the elastic model.

```
// Define objective function in post-processing
PostProcessing {
    { Name Elasticity3D ; NameOfFormulation Elasticity3D_u_coupled_transient;
        NameOfSystem Sys_Mec;
        PostQuantity {
            { Name objective ;
                Value {
                    Term { Type Global; [ objective[] ]; In Domain; }
                }
            }
        }
    }
}
```

- Call the post-operation

```
// Send the objective function in Onelab database
PostOperation
    { Name Mec ; NameOfPostProcessing Elasticity3D;
        Operation {
            Print[ objective, OnRegion Domain, TimeStep 0,
                        SendToServer "Output/diffEigenFreqNorm" ];
        }
    }
```


Onelab-based optimization (Python)

- Create a onelab client and specify the problem
- Objective and design variables as defined in onelab
- Onelab parameters defining the model (e.g. f_{0}^{d})
- Resolution used in .pro

```
# Create a onelab client
clientOnelab = onelab.client(__file__)
if clientOnelab.action == 'check': exit(0)
# Set options for both optimization problem and CAD/FEM model
options = setOptions(clientOnelab,{
    'CADFEMOptions':{
        'Input/0Type of analysis':0,
        'Optimization/Desired natural frequency [Hz]':2.5e05},
    'file':clientOnelab.getPath('magnetometer'),
    'resolution':'Analysis',
    'objective':'Output/diffEigenFreqNorm',
    'constraints':[],
    'designVariables':['Input/Geometry/5Support position [m]'],
    'iterMax':50
})
```


Onelab-based optimization (Python)

- Specify the starting value, lower ($\tau_{\min }$) and upper bounds ($\tau_{\text {max }}$)

```
# Starting value of design variables
desVar = [1.5e-04]
# Lower and upper bounds of design variables
lowerBoundDesVar = [6.0e-05]
upperBoundDesVar = [2.0e-04]
# Upper bound of constraints
upperBoundConstr = []
```

- Create an optimization solver (mma)

```
# Create an optimizer client
clientOpt = mma.client({
    'm':options['m'],
    'xmin':lowerBoundDesVar,'xmax':upperBoundDesVar,
    'asyinit':0.2,'asyincr':0.8,'asydecr':0.3
})
```

- Solve the optimization problem

```
# Call the optimization routine
xopt,objOpt,constrOpt = optimize(clientOnelab, clientOpt,
    desVar,lowerBoundDesVar,upperBoundDesVar, upperBoundConstr, options)
```


Run shape optimization ...

Shape optimization results

- Initial geometry

- Optimized geometry

- Eigenmodes
initial geometry

Shape optimization results

