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Appendix A

Gmsh

ULg-ACE and UCL-MMC provide the ONELAB consortium with Gmsh, an open-source
three-dimensional finite element grid generator with a build-in CAD engine and post-processor.
The development of Gmsh began in 1996; below we summarize the general design of Gmsh
and of its modules. We describe in some detail the Application Programming Interface (API)
that will be used as the basis for the abstract CAD, Meshing and post-processing interface of
the ONELAB project.

Gmsh is built around four modules: geometry, mesh, solver and post-processing. Each
module can be controlled either interactively using the GUI or using the built-in scripting
language. The design of all four modules relies on a simple philosophy—be fast, light and
user-friendly.

Fast: on a standard personal computer at any given point in time Gmsh should launch
instantaneously, be able to generate a “larger than average” mesh (compared to the
standards of the finite element community; say, one million tetrahedra in 2011) in less
than a minute, and be able to visualize such a mesh together with associated post-
processing datasets at interactive speeds.

Light: the memory footprint of the application should be minimal and the source code should
be small enough so that a single developer can understand it. Installing or running the
software should not depend on any non-widely available third-party software package.

User-friendly: the graphical user interface should be designed in such a way that a new user
can create simple meshes in a matter of minutes. In addition, the code should be robust,
portable, scriptable, extensible and thoroughly documented—all features contributing
to a user-friendly experience.

The technical choices made to achieve these sometimes conflicting design objectives are
detailed in [11]. Of particular note is that Gmsh is entirely written in standard C++ (both
the kernel and the user interface, which is based on FLTK and OpenGL), that the kernel
uses BLAS (through the GNU Scientific Library) for most of the basic linear algebra robust
geometrical predicates in critical portions of the algorithms.

Gmsh is released under the GNU General Public License and is part of several official
Linux distributions (most notably Debian). It can be built either as a stand-alone program
or as a library on most computer architectures and operating systems, from Windows laptops
to Macintosh workstations to large HPC Linux clusters.

3



Appendix B

Abstract CAD/Meshing Interface

Gmsh never had the ambition of becoming a solid modeling platform that competes with
the few well-established, state of the art CAD engines like Parasolid or CATIA. The native
Gmsh CAD engine thus has only a limited set of features, well suited for dealing with simple
academic geometries. Yet, over the years, Gmsh has been used by an increasing number of
people in industry, and a strong demand emerged from this user community for Gmsh to be
able to mesh industrial CAD models.

One option for addressing this demand is to use exchange files, such as IGES (Initial
Graphics Exchange Specification), VRML (Virtual Reality Markup Language) or STEP
(STandard for the Exchange of Product model data). However, the use of such exchange
file formats has always been a cause of trouble in engineering design offices, mainly because
internal data structures of CAD systems are usually much richer than those in the exchange
formats. The necessary simplifications of geometries as well as the importance of modeler
tolerances that are not taken into account in exchange files lead to the time-consuming need
to “fix” most of these exchange files before any meshing can be performed.

In Gmsh, we thus chose to deal with CAD engines differently, by providing native ac-
cess to the underlying CAD models—without translation files (a similar approach is used in
CAPRI [12]). For that, the geometry module is based on a set of abstract data structures
that enables us to represent the topology of any solid model. Gmsh can then be extended to
use new CAD engines simply by deriving these abstract data structures for each new engine.

B.1 Topological Entities

Any 3-D model can be defined using its Boundary Representation (BRep): a volume (called
region) is bounded by a set of surfaces, and a surface is bounded by a series of curves; a curve
is bounded by two end points. Therefore, four kinds of model entities are defined:

1. Model Vertices G0
i that are topological entities of dimension 0,

2. Model Edges G1
i that are topological entities of dimension 1,

3. Model Faces G2
i that are topological entities of dimension 2,

4. Model Regions G3
i that are topological entities of dimension 3.
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Model entities are topological entities, i.e., they only deal with adjacencies in the model,
and we use a bi-directional data structure for representing the graph of adjacencies. In
this representation, a model entity Gd

i of dimension d holds one lists of upward adjacencies
Gd+1

j (Gd
i ), i.e., all its adjacent entities of dimension d+1, and one list of downward adjacencies

of dimension d− 1, Gd−1
j (Gd

i ). Schematically, we have

G0
i
⇀↽ G1

i
⇀↽ G2

i
⇀↽ G3

i .

This representation is said to be complete because any model entity is able to build its list
of adjacencies of any dimension using local operations, i.e., without having to do a complete
traversal of the adjacency graph of the model.

B.2 Geometrical Description

Each model entity Gd
i has a shape, a geometry. More precisely, it is a manifold of dimension

d that is embedded in 3-D space. (Note that the overall geometric model may itself be
non-manifold: Gmsh supports non-manifold features such as embedded curves and surfaces
and connected volumes. Some non-manifold examples will be shown in the mesh generation
Section B.4.)

The geometry of a model entity depends on the solid modeler for its underlying repre-
sentation. Solid modelers usually provide a parametrization of the shapes, i.e., a mapping
~x ∈ Rd 7→ ~p ∈ R3:

1. The geometry of a model vertex G0
i is simply its 3-D location ~xi = (xi, yi, zi).

2. The geometry of a model edge G1
i is its underlying curve Ci with its parametrization

~p(t) ∈ Ci, t ∈ [t1, t2].

3. The geometry of a model face G2
i is its underlying surface Si with its parametrization

~p(u, v) ∈ Si. Note that, for any curve Cj that is on a surface Si, mesh generation
procedures require the ability to reparametrize any point ~p(t) ∈ Cj on the surface Si,
i.e., to compute the mapping u = u(t) and v = v(t). Gmsh either uses a brute force
algorithm to compute the direct mapping x = x(t), y = y(t) and z = z(t) and its inverse
u = u(x, y, z) and v = v(x, y, z) (see Figure B.1), or, when the underlying CAD system
provides it, the direct reparametrization of a point on a model face (i.e., a function that
directly computes u = u(t) and v = v(t)).

4. The geometry associated to a model region is R3.

Solid modelers usually provide an API for the creation, manipulation, interrogation and
storage of 3-D models. To perform mesh generation only a small subset of this API has to
be interfaced—only some of the interrogation functions are necessary. In order to get the full
functionality of Gmsh, only five CAD-system dependent interrogation functions have to be
implemented for the model edge (see Figure B.2). For example, it is mandatory to be able to
evaluate the mapping ~p(t) ∈ C on the curve as well as the tangent vector ~t(t) = ∂t~p(t). For the
model face, only four functions have to be overloaded in order to enable 2-D mesh generation
(see Figure B.3). Note that the default 2-D algorithm does not require the computation
of derivatives of the surface parametrization, so that the function GFace::tangent is not
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Figure B.1: Point ~p located on the curve C that is itself embedded in surface S.

strictly required (a description of this 2-D algorithm is presented in Section B.7). The other
2-D algorithms available in Gmsh, as well as most of the available 2-D meshers (e.g. bamg [13]
or blsurf [14]), make use of derivatives of the parametrization.

B.3 Solid Model

A Gmsh model is simply built as a list of model entities, each one of which possibly of different
underlying geometries. In fact, as mentioned before, several CAD models can co-exist in the
same Gmsh model. Mixing parts coming from different CAD engines can be very interesting
in practice: for example, complex, non parametrizable parts designed with one CAD modeler
(say, a full airplane model) can be extended with a parametrizable part written using the
scripting language of the Gmsh native modeler (say, a radar antenna whose design one wishes
to optimize). The overall model can then be discretized and optimized without any CAD
translation.

B.4 Mesh Generation in Gmsh

For the description of the mesh generation process, let us consider the CAD model of a
propeller presented in Figure B.4. The model has been created with the OpenCascade solid
modeler and has been loaded in Gmsh in its native format (brep). The model contains 101
model vertices, 170 model edges, 76 model faces and one model region.

B.5 Mesh Size Field and Quality Measures

Let us define the mesh size field δ(x, y, z) as a function that defines, at every point of the
domain, a target size for the elements at that point. The present ways of defining such a
mesh size field in Gmsh are:

1. mesh sizes prescribed at model vertices and interpolated linearly on model edges;
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class GEdge : public GEntity{

// bi-directional data structure

modelVertex *v1, *v2;

std::list<GFace*> faces;

public:

// pure virtual functions that have to be overloaded

// for every solid modeler

virtual std::pair<double> parRange() = 0;

virtual Point3 value(double t) = 0;

virtual Vector3 tangent(double t) = 0;

virtual Point2 reparam(GFace *mf, double t, int dir) = 0;

virtual bool isSeam(GFace *mf) = 0;

// other functions of the class are non pure virtual

// ...

};

Figure B.2: A part of the model edge class description. GEdge::parRange returns the range
for the parameter in the curve. GEdge::value returns the 3-D point ~p(t) that is located on
the curve C for a given parameter t. GEdge::tangent evaluates the tangent vector ∂t~p(t) for
a given parameter t. GEdge::reparam computes the local parameters of the point ~p(t) on a
model face mf that has C in its closure, GEdge::isSeam tells if the curve is or is not a seam
of the face mf. Generally, seam edges are used to maintain consistency of data structure for
periodic surfaces.

class GFace : public GEntity{

// bi-directional data structure

GRegion *r1, *r2;

std::list<GEdge*> edges;

public:

// pure virtual functions that have to be overloaded

// for every solid modeler

virtual std::pair<double> parRange(int dir) const = 0;

virtual Point3 value(double u, double v) const = 0;

virtual std::pair<Vector3> tangent( double u, double v) const = 0;

virtual double curvature(double u, double v) const;

// other functions of the class are non pure virtual

// ...

};

Figure B.3: A part of thet model face class description. GFace::parRange returns the range
for the parameter in the surface in direction dir. GFace::value returns the 3-D point ~p(u, v)
that is located on the surface S for the given parameter couple (u, v). GFace::tangent

the evaluates two tangent vectors ∂u~p(u, v) and ∂v~p(u, v). The GFace::curvature function
computes the divergence of the unit normal vector at (u, v). This last function is used for the
definition of mesh size fields. It is not a pure virtual function: a default implementation is
available using finite differences.
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Figure B.4: CAD model of a propeller (left) and its volume mesh (right)

2. prescribed mesh gradings on model edges (geometrical progressions, ...);

3. mesh sizes defined on another mesh (a background mesh) of the domain;

4. mesh sizes that adapt to the principal curvature of model entities.

These size fields can then be acted on by functionals that may depend, for example, on the
distance to model entities or on user-prescribed analytical functions; and when several size
fields are provided, Gmsh uses the minimum of all fields. Thanks to that mechanism, Gmsh
allows for a mesh size field defined on a given model entity to extend in higher dimensional
entities. For example, using a distance function, a refinement based on the curvature of a
model edge can extend on any surface adjacent to it.

Let us now consider an edge e of the mesh. We define the adimensional length of the edge
with respect to the size field δ as

le =

∫

e

1

δ(x, y, z)
dl. (B.1)

The aim of the mesh generation process is twofold:

1. Generate a mesh for which each mesh edge e is of size close to le = 1,

2. Generate a mesh for which each element K is well shaped.

In other words, the aim of the mesh generation procedure is to be able to build a good quality
mesh that complies with the mesh size field.

To quickly evaluate the adequation between the mesh and the prescribed mesh size field,
we defined an efficiency index τ [8] as

τ = exp

(
1

ne

ne∑

e=1

τe

)
(B.2)
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with τe = le − 1 if le < 1 and τe =
1

le
− 1 if le ≥ 1. The efficiency index ranges in τ ∈ [0, 1]

and should be as close as possible to τ = 1.
For measuring the quality of elements, various element shape measures are available in

the literature [20, 17]. Here, we choose a measure based on the element radii ratio, i.e. the
ratio between the inscribed and the circumcircles.

If K is a triangle, we have the following formula

γK = 4
sin â sin b̂ sin ĉ

sin â+ sin b̂+ sin ĉ
,

â, b̂ and ĉ being the three inner angles of the triangle. With this definition, the equilateral
triangle has a γK = 1 and degenerated (zero surface) triangles have a γK = 0.

For a tetrahedron, we have the following formula:

γK =
6
√

6Vk(
4∑

i=1

a(fi)

)
max

i=1,...,6
l(ei)

,

with VK the volume of K, a(fi) the area of the ith face of K and l(ei) the dimensional length
of the ith edge of K. This quality measurement lies in the interval [0, 1], an element with
γK = 0 being a sliver (zero volume).

B.6 1-D Mesh Generation

Let us consider a point ~p(t) on a curve C, t ∈ [t1, t2]. The number of subdivisions N of the
curve is its adimensional length:

∫ t2

t1

1

δ(x, y, z)
‖∂t~p(t)‖dt = N. (B.3)

The N + 1 mesh points on the curve are located at coordinates {T0, . . . , TN}, where Ti is
computed with the following rule:

∫ Ti

t1

1

δ(x, y, z)
‖∂t~p(t)‖dt = i. (B.4)

With this choice, each subdivision of the curve is exactly of adimensional size 1, and the 1-D
mesh exactly satisfies the size field δ. In Gmsh, (B.4) is evaluated with a recursive numerical
integration rule.

B.7 2-D Mesh Generation

Curved surface shapes designed by CAD systems are usually defined by parametric surfaces,
for example, NURBS [21]. Let us consider a model face G2

i with its underlying geometry,
in this case a surface S ∈ R3 with its parametrization ~p(u, v) ∈ S, where the domain of
definition of the parameters (u, v) is defined by a series of boundary curves. An example of
such a surface is given in Figure B.5, which shows one of the 76 model faces of the propeller
in the parametric space (left) and in real space (right). Three features of surface S, common
in CAD descriptions, make its meshing non-trivial:
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Figure B.5: Geometry of a model face in parametric space (left) and in real space (right).
Two seam edges are present in the face. The top model edge is degenerated in one point.

1. S is periodic. The topology of the model face is modified in order to define its closure
properly. A seam is present two times in the closure of the model face. These two
occurrences are separated by one period in the parametric space.

2. S is trimmed: it contains four holes and one of them is crossed by the seam.

3. One of the model edges of S is degenerated. This is done for accounting of a singular
point in the parametrization of the surface. This kind of degeneracy is present in many
shapes: spheres, cones and other surfaces of revolution.

Techniques for generating finite element meshes on curved surfaces are of two kind:

1. techniques for which the surface mesh is generated directly in the real 3-D space;

2. techniques for which the surface mesh is generated in the parametric space.

The principal advantage of doing the surface mesh in the 3-D space directly is that no interface
to the solid modeler is required. Such algorithms have been used for building meshes from
STL (stereolithography) data files [1], from medical imaging [32] or to adapt/modify existing
meshes [6]. The main drawback of such algorithms is their relative lack of robustness.

The second alternative can be applied only if a parametrization of the surfaces is available.
If it is the case, doing the mesh in the parametric space is usually advantageous because all
the meshing procedures can be applied in the parametric plane. This allows mesh operators
to be highly robust—we will detail that argument later.

Yet, all surfaces do not always have a parametrization that conserves angles and lengths.
Consequently, only 2-D algorithms that allow to build anisotropic meshes in the plane can
be considered as good candidates for doing surface meshing. Figure B.6 presents the surface
mesh of the model face of Figure B.5, both in the parametric space and in the real space. The
mesh in the real space is isotropic and uniform while the one in the parametric space is highly
anisotropic and non uniform. To solve this problem, George and Borouchaki [7] have proposed
the use of a metric derived from the first fundamental form of the surface. The metric field
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Figure B.6: Mesh of a model face drawn in the parametric space (left) and in the real space
(right).

is a second order tensor field that has the form, at any point of the parametric space, of a
2 × 2 matrix. The metric is used to define angles and distances in parametric space. With
their Delaunay approach, the ”empty circle” property, effectively becomes an ”empty ellipse”
property. An equivalent “metric-based” advancing front surface mesh generation algorithms
is presented by Cuilliere in [3]. A more exotic metric-based approach based on packing ellipses
has been devised by Yamada et al. [28] and has been used more recently by Lo and Wang in
[18].

In addition to a Delaunay implementation similar to [7] and a frontal-Delaunay meshing
technique inspired by [22], Gmsh provides an original surface meshing strategy based on the
concept of local mesh modifications [15, 16, 23]. The main advantage of the new approach,
compared to the other ones based on the Delaunay criterion, is that it does not require the
computation of derivatives of the parametrization. For that reason, the new approach remains
robust even when the parametrization is singular.

The algorithm works as follows. First, an initial mesh containing all the mesh points of the
curves bounding the face is built in the parametric space using a divide and conquer strategy
[4]. Then, all the edges of the 1-D discretization are recovered using swaps [31]. Finally, local
mesh modifications are applied:

1. Each edge that is too long is split;

2. Each edge that is too short is removed using an edge collapse operator;

3. Edges for which a better configuration is obtained by swapping are swapped;

4. Vertices are re-located optimally.

More precisely, here is how these four local mesh modifications procedures are applied in
Gmsh:

Edge Splitting: An edge is considered too long when its adimensional length is greater than
le > 1.4. When split, the two new edges will have a minimal size of 0.7. In order to
converge to a stable configuration, an edge of size le = 0.7 should not be considered as
a short edge.
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Fig. 1. Shallow water notations for water depthH with a time-independent bathymetry h. Notice that the relative elevation η is usually several
orders of magnitude smaller than the unperturbed depth.
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Fig. 2. Local mesh modifications. Edge split (top), edge collapse (middle) and edge swap (bottom). The zone depicted in bold represents the

cavity that is modified by the local mesh modification.

Figure B.7: Illustration of local mesh modifications.

Edge Collapsing: An edge is considered to be short when its adimensional length is smaller
than le < 0.7. An edge cannot be collapsed if one of the remaining triangles after the
collapse is inverted in the parametric space.

Edge Swapping: An edge is swapped if min (γe1 , γe2) < min (γe3 , γe4) (see Figure B.7),
unless

1. it is classified on a model edge;

2. the two adjacent triangles e1 and e2 form a concave quadrilateral in the parametric
space;

3. the angle between the triangles normals is greater than a threshold, typically 30
degrees.

Vertex Re-positioning: Each vertex is moved optimally inside the cavity made of all its
surrounding triangles. The optimal position is chosen in order to maximize the worst
element quality [5].

For each of these local mesh modification procedures, the opportunity of doing a mesh
modification is evaluated in the real space, i.e., in (x, y, z), while the validity of a mesh
modification is evaluated in the parametric space (u, v). Therefore, Gmsh mesh generators
always retain both real and parametric coordinates of any mesh vertex. To ensure robustness,
all the elementary geometrical predicates make use of robust algorithmics [27].

In practice, this algorithm converges in about 6-8 iterations and produces anisotropic
meshes in the parametric space without computing derivatives of the mapping.

Let us illustrate the algorithm on an example. We have meshed the model face of Figure
B.6 using an analytical size field

δ(x, y, z) = δ0[1 + cos(π(x+ y − z)/L)] + ε

where L is a characteristic size of the domain and ε � δ0 < L. Figure B.8 shows the mesh
in the parametric space at different stages of the algorithm. Note that the derivatives of the
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initial iter. 1 iter. 3

iter. 5 final

Figure B.8: Illustration of the surface meshing algorithm based on local mesh modifications.
The images correspond to the initial mesh containing boundary vertices, the mesh after 1,
3, 5 and 8 iterations. At iteration 8, the algorithm has converged. The size field efficiency
τ = 0.89 can be considered as excellent: 90 % of the elements have a radii ratio γK greater
that 0.9.

parametrization of the underlying surface are not defined at the singular point so that any
algorithm that requires to compute such derivatives would be in trouble in this case.

B.8 3-D Mesh Generation

Once a surface triangulation is available, an automatic mesh generation procedure does not
usually require an interface to a CAD system. Indeed, Gmsh interfaces several open source
3-D tetrahedral mesh generation kernels [25, 29] in addition to its own Delaunay refinement
algorithm. These algorithms are standard [9, 25] and will not be explained here. We focus
on two other issues instead:

1. the way Gmsh interfaces multiple mesh generation algorithms;

2. the way Gmsh optimizes the quality of 3-D meshes.
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(A third issue concerns the way Gmsh handles mixed structured/unstructured grids—this
is addressed in Section B.10.)

B.8.1 Mesh Algorithm Interfaces

Gmsh is able to deal with most of the standard finite element shapes: lines, triangles, quad-
rangles, tetrahedra, hexahedra, prisms and pyramids. The internal mesh data structures are
designed to minimize the memory footprint without compromising flexibility: in addition to
a integer tag and a partition/visualisation index, any element only holds its ordered list of
vertices. With that simple design, Gmsh can load about 12 million tetrahedra per Giga-
byte of memory (28 bytes per tetrahedron, 44 bytes per mesh vertex), including graphics
representation, i.e., OpenGL vertex arrays [26].

When “in house” meshing routines are used, Gmsh derives (in the object oriented sense)
enriched data structures specifically tailored for each meshing algorithm. Those derived struc-
tures contain just the right extra information necessary: the parametric coordinates of a vertex
for parametric 2-D meshing algorithms, the neighbours of a tetrahedron for the 3-D Delaunay
algorithm, etc. With this approach the footprint of a tetrahedron is for example extended to
84 bytes, and the 3-D Delaunay algorithm implemented in Gmsh, using a classical Bowyer-
Watson algorithm [30], is able to build about 7 million tetrahedron per Gigabyte of memory
(including overhead like the data structures of the CAD engine).

When a third party mesh generator is invoked, Gmsh needs of course to allocate the
appropriate structures required by that specific software. But thankfully, while transferring
the data from the third party algorithm into Gmsh, only the minimal internal data structures
need to be allocated (i.e., 28 byte per tetrahedron in the 3-D case mentioned above). This
greatly reduces the overhead incurred by interfacing external algorithms.

B.8.2 Tetrahedral Mesh Improvement

Tetrahedral mesh improvement is usually required to produce 3-D meshes suitable for grid-
based numerical methods [5]. Unfortunately, mesh optimization procedures have a lot to
do with “black magic”: even if the ingredients required to construct a mesh optimization
procedure are well known (essentially swapping and smoothing), there is no known “best
recipe”, i.e., no known optimal way of combining those smoothing and swapping operators.

Gmsh implements its own mesh optimization procedure to enhance tetrahedral mesh qual-
ity by means of edge- and face-swappings and vertex relocations, and also interfaces third
party mesh optimizers—in particular the open-source optimizer from Netgen [25]. Interest-
ingly, applying optimization routines one after the other enables to produce better meshes
than applying mesh optimizers separately. Figure B.9 shows the distribution of elemental
qualities on the mesh of a toroidal domain containing about 600,000 tetrahedra (the mesh
was generated in about 30 seconds with the “in house” 3-D Delaunay algorithm). The un-
optimized mesh contains quite a few ill shaped elements: more than 5000 elements have an
aspect ratio γK below 0.2 and the worst shaped element has an aspect ratio of 10−3. After one
pass of the Gmsh mesh optimizer, which takes about 12 seconds, all slivers have disappeared
and the worst element has an aspect ratio of 0.32. The distribution of element quality is
enhanced, with a clear right shift of the distribution. Applying the Netgen optimizer after
the Gmsh optimizer, additional improvement can be observed: the worst elemental quality
is now 0.41 and another shift to the right has occurred. However, the application of the
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Figure B.9: Distribution of γK in a mesh of about 600, 000 tetrahedra.

Netgen optimizer also dramatically reduced the number of elements in the mesh, and this
second optimization pass took more than 200 seconds—about 15 times more than for the
Gmsh optimizer. Transferring the mesh in Netgen format also doubled the memory usage.

B.9 Examples

One of the objectives of this section is to demonstrate that Gmsh is able build meshes that
can be used by the finite element community. The various examples shown below can all be
downloaded from the Gmsh web site. They come from different sources: native Gmsh CAD
models, CAD models found on the web, or CAD models that were proposed by industrial and
academic partners. The formats considered are IGES, STEP, BREP and Gmsh. Various size
fields have been used, uniform or not. Both 2-D and 3-D statistics are provided.

Table B.1 presents details for some of the models (see Figure B.10) used in the Gmsh
2-D test suite. Mesh size field are defined in a variety of ways: analytic, uniform, size fields
driven by distance functions (attractors), boundary layers, size fields related to the curvature
of surfaces, or size fields interpolated using sizes that are defined on model vertices. Table B.2
gives statistics for the 2-D meshes generated with the surface meshing algorithm presented
in Section B.7. In the case of planar surfaces and uniform meshes this algorithm is about
three times slower than the 2-D anisotropic Delaunay mesh generator implemented in Gmsh.
However, when multiple size fields are involved and/or when the surfaces are very complex,
this new approach becomes competitive in terms of CPU time—and is much more robust
than the anisotropic Delaunay mesher. With the caveat that the performance and robustness
of mesh generation algorithms are highly dependent on their implementation, we believe this
shows evidence that the new algorithm proposed in Section B.7 is a viable alternative to
classical Frontal or Delaunay approaches.

Table B.3 presents some statistics for 3-D meshes. The first example can serve as reference:
it is a unit cube that is meshed uniformely with about one million tetrahedra. Some of the
examples have complex mesh size fields (linkrods or frogadapt). One has small features in
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gmsh zylkopf cylhead

fuse frog world ocean

Figure B.10: Some images of surface meshes.

type nR nF nE nV δ

cube GMSH 1 6 12 8 uniform
gmsh GMSH 0 1 35 23 attractor
frog IGES 1 475 950 477 uniform

frogadapt IGES 1 475 950 477 analytic
linkrods STEP 1 37 108 74 analytic
zylkopf STEP 1 137 404 270 at vertices
cylhead BREP 1 1054 2485 1445 uniform

fuse STEP 1 249 723 476 curvature
block STEP 1 533 1586 1048 uniform
senzor GMSH 8 90 200 146 at vertices

world ocean GMSH 0 1 4245 145291 boundary layer
media GMSH 1274 8398 5779 3894 uniform

Table B.1: Statistics on the models that are considered: nR,nF ,nE and nV are respectively
the number of model regions, of model faces, of model edges and of model vertices in the
model. δ is the size field.
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block linkrods senzor

frogadapt media
(W. Scholz, T.U. Wien)

Figure B.11: Some images of volume meshes.
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np ne γK > 0.9 minK γK avgKγK l√2 τ CPU

gmsh 28041 55922 83.5% 0.287 0.946 99.0% 0.891 10 s
linkrods 55959 119922 84.2% 0.385 0.946 98.9% 0.893 61 s
zylkopf 32806 65668 86.0% 0.105 0.947 98.5% 0.860 8 s
cylhead 84014 188150 77.5% 0.050 0.915 95.5% 0.892 45 s

fuse 23485 47038 76.0% 0.010 0.919 97.3% 0.886 11 s
block 19694 55530 76.0% 0.021 0.923 96.8% 0.895 20 s
senzor 19876 40002 84.6% 0.546 0.947 98.4% 0.896 11 s
ocean 1152011 2255212 89.0% 0.211 0.950 99.1% 0.901 729 s

Table B.2: Surface mesh generation statistics. Here, np are ne are the number of points
and triangles in the surface mesh, γK > 0.9 states for the percentage of triangles that have
a quality measure γK greater that 0.9, minK γK is the worst element quality in the surface
mesh and avgKγK is the average elemental quality. The quantity l√2 states for the percentage

of edges that have an adimensional length in the range 1/
√

2 < le <
√

2. The factor τ is the
efficiency index defined in Equation (B.2). The last column gives the CPU time (in seconds)
for performing the surface mesh generation.

np ne minK γK avgKγK CPU (mesh) CPU (opti)

cube 195,671 1,098,530 0.235 0.717 49 sec. 36 s
linkrods 341,297 1,836,634 0.347 0.756 111 s 117 s

block 48,897 221,090 0.012 0.660 12 s 14 s
senzor 143,799 805,392 0.222 0.765 35 s 27 s

frogadapt 403,947 2,381,969 0.172 0.691 116 s 180 s
media 164,517 890,756 0.071 0.696 55 s 31 s

Table B.3: Volume mesh generation statistics. Here, np are ne are the number of points and
tetrahedron in the volume mesh, minK γK is the worst element quality in the volume mesh
and avgKγK is the average elemental quality. The last two columns give mesh generation and
mesh optimization timings.

the geometry (block). Some have multiple volumes (media or senzor). Complex mesh size
fields such as the ones of linkrods or frogadapt make the mesh generation process slower of
about 20%. This overhead is essentially due to the evaluation of the mesh size field. Mesh
with strong size variations or with small geometric features require more optimization. The
performance figures mentioned in Section B.8.1 hold even for models with a large number of
model regions: the model called “media”, created in the native Gmsh CAD format, involves
over 1000 model regions and was meshed using the 3-D Delaunay algorithm in less than one
minute. All timings were measured on a standard MacBook Pro with a CPU clocked at 2.0
GHz.

B.10 Mixed Meshes

In addition to unstructured meshes, Gmsh enables the generation of simple structured meshes
in 1-D, 2-D and 3-D, and allows to couple these with unstructured meshes. Structured
technologies include transfinite and elliptic meshes as well as a variety of sweeping techniques.
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boundary layer sweep sweep (detail)
(R. V. Sabariego, Univ. of Liège)

Figure B.12: Some images of hybrid volume meshes.

For example, to build a boundary layer mesh from a set of source surfaces (see Figure B.12),
Gmsh

1. creates the topology of the boundary layer by sweeping zero-height volumes from all
the source surfaces. (In addition to the boundary layer volumes, this creates a set of
new boundary layer points, curves and surfaces. These new points, curves and surfaces
will only acquire a concrete representation during the meshing process.)

2. meshes the source surfaces and computes (unique) normals at the mesh vertices;

3. sweeps the boundary layer points along the normals, and remeshes all the non-boundary-
layer curves connected to these points, and then meshes the boundary layer curves by
sweeping along the normals;

4. meshes the non-source surfaces, then the boundary layer surfaces (again by sweeping
along the normals), and finally the volumes.

Once all the structured parts are meshed, the remaining parts are meshed using the un-
structured algorithms, resulting in conforming mixed meshes. In order for the final mesh to
be conforming, the structured algorithm splits hexahedra, prisms or pyramids into simplices
when needed.
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Appendix C

Reparametrization and CAD
cleaning

This appendix details the remeshing capabilities of Gmsh, currently under development. Part
of the work detailed below was supported by the Walloon Region under WIST2 grant EF-
CONIVO.
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SUMMARY

In this paper, we present an efficient and robust technique for surface remeshing based on harmonic
maps. We show how to ensure a one-to-one mapping for the discrete harmonic map and introduce a cubic
representation of the geometry based on curved PN triangles. Topological and geometrical limitations of
harmonic maps are also put to the fore and discussed. We show that, with the proposed approach, we are
able to recover high quality meshes from both low input STL triangulations and complex surfaces defined
by many CAD patches. The overall procedure is implemented in the open-source mesh generator Gmsh.
Copyright 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Creating high-quality meshes is an essential feature for obtaining accurate and efficient numerical
solutions of partial differential equations as it impacts both the accuracy and the efficiency of the
numerical method using those meshes [1, 2].

In many cases, surfaces do not have a standard CAD representation and are only known
by triangulations such as stereolithography (STL) triangulations. These kinds of surfaces are
commonplace in many areas of science and engineering, e.g. in the form of 3D scanned images,
terrain data, or medical data obtained from imaging techniques through a segmentation procedure.
Such triangulations are often oversampled and/or of poor quality (with triangles exhibiting very
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404 J.-F. REMACLE ET AL.

small aspect ratios), which makes them unsuited for direct use by numerical methods like finite
elements, finite volumes, or boundary elements. This is also problematic for the volume mesh
since the surface mesh serves as input for the volume meshing algorithms. Improving the mesh
quality can then be performed using a remeshing procedure.

In the case of manufactured objects, the surfaces are often designed using a CAD system
and described through a constructive solid geometry procedure. Non Uniform Rational B-Splines
(NURBS) are commonly used for describing the shape of surfaces. NURBS surfaces are usually
nice and smooth so that it is possible to produce high-quality surface meshes using NURBS as
input. However, most surface mesh algorithms mesh model faces individually, which means that
points are generated on the bounding edges and that these points will be part of the surface mesh.
If thin CAD patches exist in the model they will result in the creation of small distorted triangles
with very small angles [3, 4]—even if the bounding edges of these thin patches have no physical
significance. As in the case of a poor quality STL triangulation, a remeshing procedure is also
then desirable.

There are mainly two approaches for surface remeshing: mesh adaptation strategies [5–7] and
parametrization techniques [8–13]. Mesh adaptation strategies use local mesh modifications in
order both to improve the quality of the input surface mesh and to adapt the mesh to a given mesh
size criterion. In parametrization techniques, the input mesh serves as a support for building a
continuous parametrization of the surface. (In the case of CAD geometries, the initial mesh can
be created using any off-the-shelf surface mesher for meshing the individual patches.) Surface
parametrization techniques originate mainly from the computer graphics community: they have
been used extensively for applying textures onto surfaces [14, 15] and have become a very useful
and efficient tool for many mesh processing applications [16–20]. In the context of remeshing
procedures, the initial surface is parametrized onto a surface in R2, the surface is meshed using
any standard 2D mesh generation procedure and the new triangulation is then mapped back to the
original surface [3, 21].

This paper proposes a quality remeshing strategy based on harmonic maps for the surface
parametrization (see [20] for a survey of alternative parametrization techniques). Harmonic maps
exhibit several useful properties: (i) they are easy to compute and can be approximated using linear
systems, (ii) they are independent of the initial triangulation, (iii) they are indefinitely differentiable
on a surface, and (iv) they are one-to-one for convex mapped regions [20, 22]. Harmonic maps
do not preserve angles such as the conformal maps usually used for texture mapping [15, 18] and
by some authors for surface remeshing [23]. However, this is not quite an issue in the context of
mesh generation. Indeed, we can deal with non-conforming maps as soon as we have access to
the metric tensor that allows us to measure both lengths and angles in the parameter plane.

Discrete harmonic maps have first been successfully used for surface remeshing by Eck [21]
and Marcum [3]. However, as mentioned by Floater in [24], discrete harmonic maps are in general
not guaranteed to be one-to-one. To ensure a one-to-one discrete map, Floater suggested a different
edge spring weighting that guarantees an embedding for convex boundaries, also called ‘convex
combination map’. We show however in this paper that the quality of the metrics of the convex
combination map are not sufficient for generating high-quality meshes and suggest to only locally
apply a simple geometrical algorithm called ‘cavity check’. Another important but rarely discussed
issue regarding harmonic maps concerns the geometrical aspect of the surfaces to be parametrized.
By presenting the harmonic maps as the solution of Laplace equations, we show why the harmonic
mapping fails for surfaces with large aspect ratio. We then suggest some ways to address this
issue.

Copyright 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:403–425
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The aim of the paper is twofold: (i) we first present the harmonic mapping in a comprehensive
manner such that it becomes accessible to a wider community than the one of computer graphics
and (ii) we show that even with the known limitations of harmonic maps, they can be used for
efficiently generating high-quality surface meshes. The paper also deals with implementation.
We show a simple way to compute and implement efficiently harmonic maps using linear finite
elements with appropriate boundary conditions. We show how to guarantee that the discrete
harmonic mapping is one-to-one and well-defined for geometries with large aspect ratios. The
remeshing procedure is enhanced by using cubic mapping to smooth the initial triangulation.
Finally, different results demonstrate that high-quality unstructured meshes can be efficiently and
consistently generated for subsequent numerical simulations. We show that the resulting surface
meshes that are produced with the new technique have a better quality than standard available
remeshing techniques.

All the results presented in the paper were generated using the open-source mesh generator
Gmsh [25], where the proposed algorithms can be further studied, tested, and enhanced.

2. PARAMETRIZATION OF DISCRETE SURFACES

Parametrizing a surface S is defining a map u(x)

x∈S⊂R3 $→u(x)∈S′ ⊂R2 (1)

that transforms continuously a 3D surface S into a surface S′ embedded in R2 that has a well-
known parametrization (see Figure 1). Such a continuous parametrization exists if the two surfaces
S and S′ have the same topology, that is have the same genus G(S) and the same number of
boundaries NB . The genus G(S) of a surface is the number of handles in the surface. For example,
a sphere has a genus G=0 and NB =0, a disk has G=0 but NB =1, and a torus has G=1 and
NB =0.
In this work, we consider that the only available representation of a surface S is a conforming

triangular mesh ST in 3D , i.e. the set of triangles Tj that intersect only at common vertices or

Figure 1. Parametrization x(u) and inverse parametrization u(x) of the Tutankhamun mask that associates
every point of the surface S⊂R3 with a point of the surface S′ ⊂R2.

Copyright 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:403–425
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Figure 2. Unit triangle in local coordinates and the maps x(!),u(!), and x(u).

edges T={T1, . . . ,TN }. Let us consider a triangulated surface S that has NV vertices, NE edges,
and NT triangles. The genus G(ST) is given through the Euler-Poincaré formula:

G(ST)= −NV +NE −NT +2−NB

2
. (2)

As an example, the left part of Figure 1 shows a triangulated Tutankhamun mask. This triangu-
lated surface is homeomorphic to the unit disk, i.e. they have both a zero genus and one boundary.
It is therefore possible, in principle, to find a smooth transformation that maps S into S′.

The parametrization we look for is discrete: each vertex Vi , i=1, . . . ,NV of the triangulation
has two sets of coordinates: the 3D coordinates xi =(xi , yi , zi )∈S and the parametric coordinates
ui =(ui ,vi )∈S′. Each triangle also has two representations, one in the 3D space and one in the 2D
parametric space. Consider triangle Tj with its three vertices V1,V2, and V3. The parametrization
is one-to-one if and only if triangles do not overlap in the parametric space. Note that the notion
of triangle overlapping is only well defined in a 2D space.

This triangle can itself be parametrized using for example barycentric coordinates, i.e. standard
finite element linear shape functions (see Figure 2):

x(!)=(1−!−")x1+!x2+"x3. (3)

Similarly, we can also parametrize the triangle in S′:

u(!)=(1−!−")u1+!u2+"u3. (4)

In order to compute the mapping x(u), we first invert (4):

u−u1=
[
u2−u1 u3−u1

v2−v1 v3−v1

]

︸ ︷︷ ︸
u,v

(
!

"

)

︸︷︷︸
v

(5)

which gives

!(u)=(u,!)
−1(u−u1)=(!,u)(u−u1). (6)

The discrete mapping x(u) can therefore be computed in three steps:

1. Find the unique triangle Tj of the parametric space S′ that contains point u;
2. Compute local coordinates !=(!,") of point u inside triangle Tj using Equation (6);
3. Use Equation (3) to compute the mapping x(u)=x(!(u)).

Copyright 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:403–425
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Mesh generation procedures usually not only require the mapping x(u) but also its derivatives
x,u. We have

x,u=x,!!,u=





x2−x1 x3−x1

y2− y1 y3− y1

z2−z1 z3−z1





[
v3−v1 −(u3−u1)

−(v2−v1) u2−u1

]

(u2−u1)(v3−v1)−(v2−v1)(u3−u1)
. (7)

The metric tensor (or first fundamental form)

M=xT,ux,u (8)

then allows to compute lengths, angles, and areas. Consider one curve C drawn on the parametric
space S′. Its length is

lC=
∫

C
dl=

∫

C

√
dx2=

∫

C

√(
x,udu

)2=
∫

C

√
duTM(u)du. (9)

The practical case for mesh generation is when C is a mesh edge of the parametric space going
from point u1 to point u2. Calling e=u2−u1, its parametrization is

C={u∈S′|u=u1+ te, t ∈ [0,1]}.
In this special case, the length of a straight edge in the parameter space is computed as

lC=
∫ 1

0

√
eTM(u1+ t e)edt. (10)

3. HARMONIC MAPS WITH APPROPRIATE BOUNDARY CONDITIONS

As illustrated in Figure 1, we have chosen to map our 3D surfacesS onto a unit diskS′. Therefore,
we require genus zero surfaces that have at least one boundary that will be mapped on the unit disk.
We compute coordinates u and v separately as solutions of the following two Laplace problems:

∇2u = 0, ∇2v=0 on S,

u = ū(x), v= v̄(x) on !S1,

!nu = 0, !nv=0 on !S/!S1.

(11)

Then, we have to supply functions ū(x) and v̄(x) that map !S1 onto the unit circle. For that, we
choose arbitrarily a starting vertex Vs (see Figure 3) and we compute li that is the distance from
VS to Vi along !S1. If L is the total length of !S1, the following boundary conditions

u(xi )=cos(2#li/L), v(xi )=sin(2#li/L) (12)

map !S1 onto the unit circle.
Figure 3 shows both an initial triangular mesh of S and its map onto the unit disk. The surface

S results from the segmentation of an anastomosis site in the lower limbs, more precisely a

Copyright 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:403–425
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(a) (b)

Figure 3. (a) STL triangulation and its map onto the unit disk and (b) the mapped mesh on the unit disk.

bypass of an occluded femoral artery. The unit disk S′ contains two holes that correspond to the
boundaries of the femoral artery !S2 and the saphenous vein !S3.

At the continuous level, such a mapping can be proven to be one-to-one, provided that surface
S′ is convex. This result is called the Radò-Kneser-Choquet (RKC) theorem [26, 27]. This result
strongly depends on the fact that the solution of the Laplace equation obeys a strong maximum
principle: u(x) attains its maximum on the boundary !S of the domain. This means that there
exists only one single iso-curve u=u0 in S and that this iso-curve goes continuously from one
point of the boundary to another. If another iso-curve u=u0 existed, it should be closed inside S,
violating the maximum principle. This is also true for the iso-curve v=v0.

Consider the surface S of Figure 4(a) with one single boundary (NB =1). Surface S′ is convex
if any vertical line u=u0 intersects !S′ at most two times. This is also true for any horizontal
line v=v0. This means that any coordinate u=u0 (u0∈]−1,1[) appears exactly two times on the
boundary !S. The two points of !S for which u=u0 are designated as VA and VB while the two
points for which v=v0 are designated as VC and VD . Note that those points appear interleaved
while running through !S (VA appears either after VD or after VC but never after VB). This means
that there exists one point in S for which u=u0 and v=v0.

Now consider the case where NB =2 (Figure 4(b)). Here, zero Neumann boundary conditions
are applied to the inner boundary ofS. Those are equivalent to the resolution of a Laplace problem
on the whole domain while defining a small diffusivity inside the hole (Figure 4(c)). This second
problem obeys the same maximum principle as the one with constant diffusivity, which means
that the mapping remains one-to-one even when considering holes in the domain.

Of course, any other convex planar surface can serve as S′. In our implementation, we have
tried ellipses and rectangles. Yet, no significative difference was observed while changing the
definition of the parametric domain.

Copyright 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:403–425
DOI: 10.1002/nme

26



HIGH QUALITY SURFACE REMESHING USING HARMONIC MAPS 409

V

(a) (b) (c)

Figure 4. Iso-values of coordinates u and v on a surface S that are computed as solutions of the Laplace
equation on S with boundary conditions that map !S on the unit circle: (a) Dirichlet boundary conditions
are imposed on the outer boundary of S for two configurations; (b) S excludes the interior disk and
zero Neumann boundary conditions are applied on the inner circular boundary; and (c) S includes the

interior disk, where a small diffusion coefficient is used.

3.1. Discrete harmonic maps with linear finite elements

It is easy to prove that (11) is equivalent to the following quadratic minimization problem:

min
u∈U (S)

J (u)= 1
2

∫

S
‖∇2u‖ds (13)

with

U (S)={u∈H1(S), u= f (x) on !S}. (14)

Assume the following finite expansions for u

uh(x)=
∑
i∈I

ui$i (x)+
∑
i∈J

f (xi )$i (x), (15)

where I denotes the set of nodes of ST that do not belong to the Dirichlet boundary, J denotes
the set of nodes of ST that belong to the Dirichlet boundary and where $i are the nodal shape
functions associated to the nodes of the mesh. We assume here that the nodal shape function $i
is equal to 1 on vertex xi and 0 on any other vertex: $i (x j )=%ij.

Using the expansion (15), the functional J from (13) can be written as

J (u1, . . . ,uN ) = 1
2

∑
i∈I

∑
j∈I

ui u j

∫

ST

∇$i (x) ·∇$ j (x)ds+
∑
i∈I

∑
j∈J

ui f (x j )

∫

ST

∇$i (x) ·∇$ j (x)ds

+1
2

∑
i∈J

∑
j∈J

f (xi ) f (x j )

∫

ST

∇$i (x) ·∇$ j (x)ds. (16)

In order to minimize J , we can simply cancel the derivative of J with respect to uk :

!J
!uk

= ∑
j∈I

u j

∫

ST

∇$ j (x) ·∇$k(x)ds+
∑
j∈J

f (x j )

∫

ST

∇$k(x) ·∇$ j (x)ds

= 0, ∀k∈ I. (17)
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(a) (b) (c)

Figure 5. (a) Triangulation for which the discrete harmonic mapping is not guaranteed to be
one-to-one: x1=(r,0,1) for r>0 and x2=(1,1,0), x3=(0,0,0), x4=(1,−1,0); (b) Case r =1.5:
the mapping is one-to-one; and (c) Case r =3.5 : the mapping is not one-to-one. The point u1

does not even lie within the unit disk.

There are as many Equations (17) as there are nodes in I . This system of equations can be proven
to be symmetric positive definite so that it can be solved easily, e.g. using preconditioned conjugate
gradients. If we want to solve (17) with linear finite elements, we can compute the elementary
matrix ATk

ij of triangle Tk as:

ATk
ij =

∫

Tk
∇$i ·∇$ j ds=

∫ 1

0

∫ 1−!

0
∇!,"$iM

−1
! ∇!,"$ j

√
detM! d!d", (18)

where M! is the metric tensor of the mapping x(!).

3.2. One-to-one discrete harmonic map

In contrast to the continuous harmonic map, it was shown in [24, 28] that the discrete harmonic
map first introduced in [21] is not always one-to-one. Indeed, we can see in the next example
introduced by Floater [24] that the discrete harmonic map as presented in the previous section
is not guaranteed to be one-to-one. Consider a coarse triangulation (Figure 5) made of three
triangles ST={(1,2,3), (1,3,4), (1,4,2)} and let x1=(r,0,1) for some real value r>0 and
x2=(1,1,0),x3=(0,0,0),x4=(1,−1,0). The three boundary vertices x1,x2, and x3 are mapped
onto the boundary of the unit disk (Figures 5(b) and (c)) and the vertex x1 should be mapped
inside the triangle (u2,u3,u4) to ensure a one-to-one mapping. However, numerical methods for
solving Laplace equation may not provide solutions that obey to a discrete maximum principle,
especially when meshes are distorted [29], which can lead to discrete harmonic maps that are not
one-to-one (Figure 5(c)).

One possibility to ensure a discrete maximum principle consists in placing each point of the
parameter plane at the center of gravity of its neighbors. This method was introduced by Floater
in [24, 28] and called convex combination map. It is implemented simply by choosing

ATk
ij =




2 −1 −1

−1 2 −1
−1 −1 2



 (19)
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Figure 6. Quality histogram for the remeshing of a human pelvis. Comparison for the harmonic mapping
and the convex combination mapping.

for every element Tk . However, the parametrization resulting from a convex combination map
is much more distorted than the standard harmonic one. The equivalent PDE resulting from the
convex combination map is an anisotropic diffusion problem, with a piecewise constant diffusion
tensor that is equal to M!/

√
detM!. Surfaces with highly distorded metrics are known to make the

work of surface meshers more difficult: Figure 6 compares meshes of a human pelvis generated
using either standard harmonic mappings or convex combination maps. The quality of elements
clearly deteriorates when using convex combination maps. This can be explained by the simpler
example of Figure 7. Here, we start from a very bad triangulation (Figure 7(a)). We parametrize
it using both harmonic and convex combination maps. Iso-values of the x-coordinate are drawn
for both maps on the unit disk. Even though the mesh issued from the convex combination map is
much smoother in the parametric plane than the standard harmonic one, isovalues are much closer
to straight lines for the standard map. This means that a straight line in the parameter plane is close
to a straight line in the real plane for the harmonic map and hence that the metric tensor M (8)
is much smoother for the harmonic map than it is for the convex combination map.

To solve the problems associated with convex combination maps, we propose a more local way
to enforce discrete one-to-one map. The algorithm is called cavity check (see Figure 8) and goes
as follows:

1. Compute harmonic map using finite elements;
2. For every interior vertex Vi of the parameter plane, check if each of its neighboring triangles

(defining a cavity) is oriented properly‡;
3. If elements are reversed, move the vertex at the center of gravity of the kernel of the polygon

P surrounding the point (see Figure 8).

To find the kernel of a star-shaped polygon, different algorithms have been proposed in the literature
[30, 31]. In this work, as the polygons have a small number of vertices we have implemented a
simple quadratic algorithm. It should be noted that the situation presented in Figure 8(a) does
occur very rarely and only occurs for very poor quality initial stl files (one or two cases at most
for the examples presented in Section 5).

‡This is simply implemented by comparing normal orientations of the triangles in the parametric space.
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Figure 7. Poor quality initial triangulation (a) that has been remeshed using a harmonic map (top figures)
and a convex combination map; (bottom figures): (b) mapping of the initial mesh onto the unit disk with
iso-x values; and (c) the final mesh. For this example a direct mesher based on local mesh modifications

(Gmsh/meshadapt) is used to remesh the parametrized surface.

Figure 8. Vertex v1 with four neighboring triangles T1=(v1,v2,v3), T2=(v1,v3,v4),
T3=(v1,v4,v5), T4=(v1,v5,v2) defining the polygon P=(v2,v3,v4,v5). (a) Triangle T3 is not
well oriented and overlaps the triangles T2 and T4; (b) The vertex v1 is moved and placed inside the
kernel of the polygon P; and (c) Now, all four triangles become well oriented without overlapping

and hence the discrete mapping is guaranteed to be one-to-one for this cavity.

3.3. Harmonic maps for geometries with large aspect ratio

In some cases for which the ratio between the equivalent diameter of the closed loop !S1 and the
length in the direction normal to the surface with line loop !S1 is too high, we fail to compute
the harmonic map.

In order to explain this, we take a simple example of a surface S that is a cylinder of height
H and radius R. We can easily compute analytically the harmonic map on this cylinder. Indeed,
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Figure 9. Harmonic mapping of the cylinder onto the unit disk. The left figure shows the rectangular
domain of size [2L×H ] and the boundary conditions used to compute the analytical solution of
the Laplace equation on the cylinder of height H and radius R= L/#. The right figure shows the

harmonic map on the unit disk.

finding the harmonic map is equivalent to solving the two Laplace Equations (11) on a rectangle
of height H and length 2L , with L=#R with the boundary conditions shown in Figure 9. The
analytical solution of the problem is

u(x, y)=cos
(#x
L

)
Y (y), v(x, y)=sin

(#x
L

)
Y (y) (20)

where

Y (y)=cosh
(#y
L

)
−

(
tanh

(
#H
L

)
sinh

(#y
L

))
. (21)

The function Y (y) rapidly tends to zero. This means that, for high geometrical ratios (H/R≈6#),
computed coordinates become non distinguishable for high y’s because of the computer finite
precision. Figure 10 shows the map of the cylinder into an annulus. The inner radius of the annulus
goes to zero exponentially. In practice, using double precision arithmetic we have experienced that
Gmsh’s meshers will fail to deliver decent meshes when H/R>6#. The algorithm can be improved
by scaling the problem by the geometrical aspect ratio of the cylinder H/R and by solving the
following Laplace equation with anisotropic coefficients kx and ky :

kxu,xx +kyu,yy =0, kxv,xx +kyv,yy =0, with kx =1,ky =H/R. (22)

The solution in the y-direction is then given by:

Y (y)=
e

−y√
H

√
R

(
e

2y√
H

√
R +e

2
√
H√
R

)

e
2
√
H√
R +1

. (23)

As can be seen in Figure 11 this function is less stiff and the inner radius ri does not tend to zero
for large values of the geometrical aspect ratio.
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(a) (b) (c)

Figure 10. Harmonic map of the cylinder of height H and radius R onto the unit disk. Mesh in
the unit circle and values of y(u,v) for (a) H/R=2 (ri =0.26); (b) H/R=4 (ri =0.036); and (c)

ri =
√
u(L ,H)2+v(L ,H)2 as a function of H/R.

Figure 11. ri =
√
u(L ,H)2+v(L ,H)2 as a function of H/R for the scaled Laplacian problem (22).

This technique could be generalized in different ways. The first idea is to simply compute global
anisotropic coefficients from the size of the oriented bounding boxes [32]. A second idea is to
compute local anisotropic coefficients from the gradient of the distance function to the boundary
!S1. The distance function could be for example computed as the solution of an elliptic PDE
as described in [33]. Another possibility, usually used in computer graphics, is to use a partition
scheme based on the concept of Voronoi diagrams [21] or inspired by Morse theory [18, 34],
which would lead to a partitioning of the mesh into a number of charts that by construction have
a uniform geometrical aspect ratio.

3.4. Higher order representation of the geometry

In case of faceted triangulations, it is often desirable to smooth the normals when remeshing. This
may be the case for example when the CAD is described by very few triangles or for triangulations
obtained from crude segmentation techniques.

This can be achieved by changing only one of the three maps x(n) defined in Figure 2. Instead
of choosing linear finite elements for this mapping as is done in (3), we have chosen in this work
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Figure 12. (a) Initial STL triangulation; (b) remeshing with a linear map x(!); and
(c) remeshing with a cubic map x(!).

a cubic interpolation that is often used in the community of computer graphics [35, 36]:
x(!) = a300&+a030!+a003"+a2103&2!+a1203&!2+a2013&2"

+a0213!2"+a1023&"2+a0123!"2+a1116!"&, with &=1−!−". (24)

The coefficients aijk are the 9 control points of the curved PN triangle [36] that can be computed
from the triangle Tj ∈R3 that is defined by its three coordinates x1, x2, x3 and its three vertex
normals n1, n2, n3:

a300 = x1, a030=x2, a003=x3,
wij = (x j −xi ) ·ni ,
a210 = (2x1+x2−w12n1)/3, a120=(2x2+x1−w21n2)/3,
a021 = (2x2+x3−w23n2)/3, a012=(2x3+x2−w32n3)/3,
a102 = (2x3+x1−w31n3)/3, a201=(2x1+x3−w13n3)/3,
E = (a210+a120+a021+a012+a102+a201)/6, V =(x1+x2+x3)/3,

a111 = E+(E−V )/2.

(25)

The advantage of the curved PN triangles is that they are very straightforward to implement and
provide a smoother, though not necessarily everywhere tangent, continuous surface [36]. Figure 12
shows an initial triangulation and the new meshes computed with harmonic maps for both a linear
and cubic mapping ×(!). As can be seen, the cubic mapping enables to smooth nicely the initial
faceted triangulation.

The advantage of this method compared to smoothing-based approaches (used in the context of
direct methods) is that our technique does not result in any feature loss.

4. COMPUTATIONAL ALGORITHM

The presented algorithm for remeshing consists of different steps as illustrated in Figure 13:

1. Start from an initial triangulation.
2. Compute the mapping:

(a) Divide the surface into surfaces of genus G=0.
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Figure 13. Remeshing algorithm. (1) Initial triangulation, (2) Harmonic map u(x) and v(x), and (3) new
mesh based on the harmonic map.

(b) Solve two Laplace equations for computing u and v using finite elements.
(c) Verify that the discrete harmonic map is locally one-to-one. If not, proceed as explained

in Section 3.2.
3. Use standard surface meshers to remesh in the parametric space and map the triangulation

back to the original surface.
4. From the surface mesh, use standard volume meshers to build a 3D finite element mesh.

We will now detail some of the steps involved in the remeshing algorithm cited above.
For step 2(a), as explained in Section 2, the surface should be of zero genus and have at least

one boundary. In case the conditions to compute the harmonic map are not satisfied, the mesh is
split into different parts that each satisfy the conditions. We are currently working on an optimal
automatic splitting algorithm (numerical homology) that will be presented in an upcoming paper.
For step 2(b), we use the high-performance direct solver TAUCS to solve the linear system that
arises from the finite element discretization of the Laplace Equation (16). For step (3), we mesh
in the parametric space such that all edges e have a non-dimensional length of le=1, where the
non-dimensional length is defined as:

le=
∫

e

1
%(x)

dl, (26)

with % denoting the mesh size field [25] and where dl is given by (9).

5. EXAMPLES

The parametrization and remeshing procedure described above has been implemented in the open
source finite element mesh generator Gmsh [25]. We present several examples for which this
approach may be of interest, namely STL triangulations and triangulations that come from a
CAD representation. We then show results of direct mesh generation based on surfaces that are
parametrized with harmonic maps.
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Figure 14. Two examples of parametrizations of STL triangulations.

5.1. Remeshing (low-input) STL triangulations

In this section, we show examples of surfaces that do not have a standard CAD representation such
as STL triangulations. Those triangulations can be found in many domains such as 3D scanned
images, computer game characters, terrain data, and medical data issued from a segmentation.
Figure 14 shows some examples of parametrizations of triangulated surfaces. The examples were
found on the INRIA web site§ of Eric Saltel.

Figure 15 shows the quality histogram for the initial STL triangulation of a pelvis and arterial
bypass presented in Figure 3 and the remeshed geometry. The quality histogram shows the aspect
ratio of the surface mesh that is defined as:

"=K
inscribed radius

circumscribed radius
(27)

where K has been chosen so that the equilateral triangle has "=1.

§http://www-c.inria.fr/Eric.Saltel/saltel.php.
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(a) (b)

Figure 15. Plot of the quality histogram of both the STL triangulation and the remeshed part of (a) a
pelvis and (b) a bypass of a femoral artery.

As the surface of the pelvis is of genus G=1, one cut is made¶ to generate two surfaces of
zero genus and a parametrization based on harmonic maps is performed for each of those two
new genus zero surfaces. We can see that with the remeshing procedure, we greatly enhance the
quality of the mesh.

Figure 16 compares the efficiency and quality of the proposed method with three alternative
remeshing algorithms:

• Local mesh modifications in MeshLab [37] combines a planar flipping optimization algorithm
with a subdivision surfaces method [40] that aims at smoothing the surface by successive
refinements of the mesh. In order to establish a comparison with the other methods, we apply
a zero threshold angle, which leads to a uniform refinement over the mesh.

• The Robust Implicit Moving Least Squares (RIMLS) method described in [39] and imple-
mented in MeshLab [37], whose goal is to obtain smooth representations of surfaces while
preserving fine details. We notice that this method is designed for graphical purposes rather
than computational meshes.

• The local mesh modification strategy described in [41] and implemented in the MAdLib
package [38, 42], which modifies the initial mesh to make it comply with criteria on edge
lengths and element shapes by applying a set of standard mesh modifications (edge splits,
edge collapses and edge swaps, . . .) in an optimal order.

For the purpose of comparison only uniform size fields are prescribed in this test. The computations
were performed on a MacBook Pro 2.33GHz Intel Core 2 Duo. We can see that the additional
computational effort is quite reasonable for our method and is worth it compared to direct remeshing
methods since the mean quality of the mesh is about "̄=0.94 for the harmonic map (Gmsh/del2d)
method and respectively "̄=0.78 for the direct methods that use local mesh modifications with
MAdLib and "̄=0.85 with MeshLab. Only the subdivision method is faster than the other methods,
but it is not designed to handle 3D meshes or prescribed element sizes since the refinement
level depends only on the angle between the triangles. Another observation is that our method
behaves well regarding the low-quality elements. Finally, the RIMLS method gives meshes with

¶The cut can be easily realized with Gmsh by using the Mesh > Reclassify tool.
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Figure 16. Comparison of the proposed method based on harmonic maps (using two different surface
meshing algorithms: Gmsh/meshadapt and Gmsh/del2d [25]) with two direct remeshing methods based
on local mesh modifications (MeshLab [37] and MAdLib [38]) and with the RIMLS reparametrization
method [39]. Top: comparison of the CPU time requirement. Bottom: comparison of the quality of the

surface meshes. (The quality is found to be independent of the mesh size.)

both low quality elements and a poor mean quality ("̄=0.65) since it is not intended to produce
computational meshes.

Figure 17 shows surface and volume meshes created from low-quality triangulations for actual
biomedical applications: an arterial bifurcation and a pelvis. Figure 17(b) shows how the remeshed
surface can be used to construct high-quality boundary layer meshes for cardiovascular blood flow
simulations using MAdLib [38, 42].
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Figure 17. Meshes created from STL triangulations obtained from CT-scans: (a) Arterial bifurcation with
a uniform edge length on the boundary and a boundary layer mesh; (b) zoom of the boundary layer; (c)

pelvis with a sinusoidal edge length.

Figure 18. Surface mesh improvement with a single grouped patch and a parametrization with a harmonic
mapping: (a) Meshed CAD model with multiple patches; (b) inverse parametrization u(x) of all the patches

with a single harmonic map; and (c) new mesh of the compound.

5.2. Remeshing CAD patches

The next example shows a CAD model of a car hood made of nine different patches that are
smoothly connected together (Figure 18). Standard surface meshers mesh each of those patches
separately as shown in Figure 18(a). One common issue in engineering analysis is the presence
of small sub-patches for the description of one smooth surface, which induces the presence of
small elements, leading to difficulties in the finite element analysis. It is therefore highly useful to
reparametrize those patches into one single surface. This has been done in two steps: a mesh has
been generated on the multiple patches (Figure 18(a)) and the reparametrization (Figure 18(b))
has been computed on this first mesh. Then, we can remesh the whole compound using any of the
surface mesh generators available (Figure 18(c)). Note that, in the case of multiple CAD patches
reparametrization, points on the reparametrized surface are subsequently projected on the exact
CAD model. We use an initial triangulation that is conforming to the patches so that every triangle
of this initial triangulation lies on only one CAD patch. It is then easy to compute local CAD
coordinates of every point in the new mesh and to compute thereafter their exact location on the
CAD model.

The example of Figure 19 shows another CAD model composed of multiple patches that
has been reparametrized into three patches. This example shows clearly the advantage of
the approach when coarse meshes have to be generated. Here, reparametrizing a geometry
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Figure 19. Meshing CAD surfaces composed of multitudes of Bezier patches (courtesy of
SAMTECH): (a) Meshing all the patches separately and (b) Using harmonic maps to reparametrize

and remesh the CAD into only three patches.

allows to generate smooth uniform meshes. Small details in the initial CAD model induce the
generation of small ill-shaped elements. Note the number of reparametrized surfaces was done
arbitrarily.

As another an example of a moderately complicated CAD model, we consider the Airbus A319.
The aircraft is initially composed of 89 surface patches. After reparametrization, this number has
been reduced to 25 (Figure 20). Moreover, lots of curves were reparametrized, especially at the
junction between the wings and the fuselage. Figure 20 shows both initial and reparametrized
CAD models. Figure 21 shows a global view of the surface mesh as well as a zoom on the mesh
of the left wing. The mesh size was adapted to the curvature of the model. Figure 22 shows a large
part of the fuselage that has been reparametrized. The reparametrized patch has three holes: two
for the wings and one for the right end part. Those three holes, which are clearly visible in the
parametric plane, are highly distorted. Even though, Gmsh’s surface meshers were able to produce
high-quality meshes (Figure 21) with such highly distorded input.

5.3. Remeshing in Gmsh

As previously mentioned, the remeshing algorithm based on harmonic maps is implemented within
the open-source software Gmsh. We show a simple example of how to use it. We suppose that we
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Figure 20. The model of the airbus A319: (a) The initial CAD data made of 89 patches and (b)
reparametrized CAD made of only 25 patches.

Figure 21. Figure shows the surface mesh of the airbus A319 for which the mesh size is adapted to the
principal curvature of the model. Top figure shows a global view of the mesh, whereas bottom figures

show a zoom of the mesh of a wing, both in the real space and in the unit circle.

Copyright 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:403–425
DOI: 10.1002/nme

40



HIGH QUALITY SURFACE REMESHING USING HARMONIC MAPS 423

Figure 22. Reparametrization of a large part of the fuselage. Left figure shows iso-contours of u and v.
Center and right figures show the mesh in the parametric plane, i.e. inside the unit disk.

have an initial surface mesh and write the following text file ‘remesh.geo’:

// Merge initial mesh (in .stl, .msh, .mesh, .brep, .medit, etc. format)
Merge "bypass.stl";

// If the initial mesh contains different topological entities,
// then re-create the topology
CreateTopology;

// If necessary, create a topological volume
Surface Loop(55) = {15, 16};
Volume(56) = {55};

// Remesh the Edges and Faces (and Volumes) with harmonic maps
Compound Line(10) = {2, 3}; // merge 2 edges
Compound Surface(100) = {1:24}; // auto-detect boundary
Compound Volume(1000) = {56}

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an efficient method for surface and subsequent volume remeshing.
The method is based on the parametrization of a genus zero surface with a harmonic map.

We have presented the discrete finite element harmonic map with appropriate boundary condi-
tions. We have introduced a local ‘cavity check’ algorithm to enforce the discrete one-to-one
mapping and showed that this approach leads to higher quality meshes than the convex combina-
tion map of Floater. A higher order approximation of the geometry based on curved PN triangles
was introduced to smooth faceted STL triangulations. Our procedure is easy to implement and
very robust against low-quality input triangulations. Compared to smoothing-based approaches our
technique does not result in any feature loss and naturally offers refinement options (boundary
layer mesh, curvature, etc.). As it enables to remesh multiple CAD patches, the approach can be
used to substantially reduce the time required to prepare CAD surface definition for surface mesh
generation. The time required to generate the surface mesh is less than 100s per 106 elements.
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Furthermore, the generated elements have a high mean quality measure, which is a clear demon-
stration of the suitability of the meshes for finite element simulations.

We are currently working on an optimal numerical homology algorithm that will automatically
cut a initial surface onto different surfaces of genus zero with uniform geometrical aspect ratio. With
this upcoming algorithm we hope to obtain a fully automatic method for high-quality remeshing
of any topological surface without any geometrical constraint.
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SUMMARY

This paper follows a previous one that was dealing with high quality surface remeshing using harmonic
maps [1]. In [1], it has been demonstrated that harmonic parametrizations can be used as input for
surface meshers to produce high quality triangulations. However, two important limitations were
pointed out, namely surfaces with high genus and/or of large aspect ratio. This papers addresses
those two issues. We first develop a multiscale version of the harmonic parametrization of [1] and
then combine it with a multilevel partitioning algorithm to come up with an automatic remeshing
algorithm that overcomes the above mentioned limitations of harmonic maps. The overall procedure
is implemented in the open-source mesh generator Gmsh [2]. Copyright c© 2010 John Wiley & Sons,
Ltd.

key words: surface remeshing; surface parametrization; STL file format; surface mapping; harmonic

map; conformal map; finite elements

1. Introduction

Most of the surface meshing procedures require a parametrization of the surface. The surface
mesh is generated in the parametric plane and is subsequently projected onto the 3D surface
using the parametrization. Yet, there are situations when the only description of the surface
is a triangulation. In the latter case, the geometric triangulation can usually not be used for
a finite element analysis. One can either modify the geometric triangulation in 3D or use the
triangulation for building a discrete parametrization.

The main driving force in the research on discrete parametrization techniques is Computer
Graphics (CG) where discrete parametrizations are used among other things for texture
mapping. Various approaches have been proposed in the CG literature and it is possible to
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2 E. MARCHANDISE

classify them as follows: linear, non-linear and hybrid methods. Linear algorithms are efficient,
yet they usually do not guarantee the discrete mapping to be one-to-one. It is possible to
combine linear algorithms with local checks to guarantee its bijectivity: we called that approach
hybrid [1]. Non-linear algorithms are considered to be slow and will not be considered here.

The concept of discrete harmonic map has been described first by Eck [3]. Floater et al. [4]
introduced a concept of convex combination map that guarantees that the discrete mapping
is one-to-one. Sheffer and Strurler [5] presented a constrained minimization approach, the so-
called angle based flattening (ABF), such that the variation between the set of angles of an
original mesh and one of the 2D flattened version is minimized. In order to obtain a valid and
flipping-free parametrization, several additional constrained algorithms are developed. More
recently, they improved the performance of the ABF technique by using an advanced numerical
approach and a hierarchical technique [6]. Much research has also been incorporated within
the theory of differential geometry. For example, Levy et al [7] apply the Cauchy Riemann
equations to compute a least square conformal map. This approach is quite similar to that
of Desbrun [8] that minimize a combination of Dirichlet and distortion energy to compute a
conformal map for interactive geometry remeshing. More recently, Mullen et al. [9] have also
presented spectral computation of the conformal map [9].

Recently, discrete parametrizations methods have received some attention from non CG-
specialists and in particular, in the domain of finite element mesh generation. Here, the target
application is clearly surface meshing, especially for surfaces that are defined by a triangulation
only or for cross-patch meshing. In [1], we have demonstrated that the use of such mappings as
parametrizations allowed to generate quality finite element meshes. Yet, two important issues
have not been completely addressed: reparametrization techniques fail when the surface has
a large aspect ratio and/or when it has a high genus. Those issues are critical in the domain
of mesh generation, maybe more than in computer graphics. This paper aims at addressing
those two issues.

In [1], we have demonstrated that parametric coordinates computed using a discrete
harmonic map become exponentially small for vertices located away from the boundaries of
the surface to be remeshed. This makes any 2D remeshing procedure fail because the local
coordinates become numerically undistinguishable. If this issue has already been tackled by
Alliez et al. in the CG community [10], their proposed solution procedure can however not be
used in the context of surface remeshing. In a few words, the idea of Alliez et al. is to partition
the zero genus mesh of large geometrical aspect ratio into two parts. The partition is defined by
first computing an harmonic map and by evaluating the area distortion map that indicates how
the triangles have been shrunk or expanded during the parametrization. Then a vertical line is
drawn in the parametric space that passes through the center of gravity of the distortion map
and that defines the partition of the mesh. If the authors in [10] could partition this way some
simple surfaces with moderate aspect ratio, we found that this area-distortion partitioning
algorithm fails for larger geometrical aspect ratio for the same reason the remeshing procedure
fails (numerically indistinguishable coordinates). Here, we thus extend the idea of Alliez and
develop the concept of multiscale harmonic maps.

The second issue that we address deals with the parametrization of surfaces that are
not homeomorphic to a unit disk, i.e., surfaces that do not have zero genus with at least
one boundary. In the CG community, many authors use a partition scheme based on the
concept of Voronöı diagrams [3] or inspired by Morse theory [7, 11]. The resulting mesh
partitions are area-balanced patches that are disk-like. However, this approach results in a
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HIGH QUALITY SURFACE REMESHING USING HARMONIC MAPS: PART II 3

large number of patches and hence a large number of interfaces between those patches. A large
number of patches is however not desirable in the context of remeshing because it constrains
the final mesh to have mesh edges on those interfaces. Other CG authors introduce seam
generation techniques [7, 12] that generate cuts in the surface that are positioned in areas
where they cause no texture artifacts. More recently, some authors suggested different methods
to compute parametrizations that are globally smooth with singularities occurring at only a
few extraordinary vertices [13, 14]. Even though the latter two techniques are attractive in
the context of texture mapping, they are less efficient in terms of computational time than
partitioning methods combined with a local parametrization method.

The solution strategies presented in this paper for the remeshing of surfaces with large
geometrical aspect ratio and arbitrary genus are independent of the chosen type of linear
harmonic maps. Among the harmonic maps, we have implemented the Laplacian harmonic
map onto a unit disk [1], the convex combination map onto a unit disk [1, 4] and a finite
element least square conformal map with open boundaries [9, 10]. The different linear harmonic
maps along with the solution strategies presented in this paper are implemented in the open
source mesh generator software Gmsh [2]. The different examples show that our method is
of high interest for remeshing biomedical triangulations that have a very poor quality input
triangulation, or for industrial CAD-based surfaces that contain too many tiny surfaces that
are not appropriate for finite element computations.

2. Parametrization of a mesh with harmonic maps

Parametrizing a surface S is defining a map u(x)

x ∈ S ⊂ R3 7→ u(x) ∈ S∗ ⊂ R2 (1)

that transforms continuously a 3D surface S into a surface S∗ embedded in R2 that has a well
known parametrization. Such a continuous parametrization exists if the two surfaces S and S∗
have the same topology, that is have the same genus G(S) and the same number of boundaries
∂Si, i = 1, ..., NB . The genus G(S) of a surface is the number of handles in the surface†.

In this work, we consider that the only available representation of a surface S is a conforming
triangular mesh T in 3D, i.e. the union of a set of triangles that intersect only at common
vertices or edges. Let us consider a triangulated surface that has nV vertices, nE edges and
nT triangles. The genus G(T ) is then given through the Euler-Poincaré formula:

G(T ) =
−nV + nE − nT + 2−NB

2
, (2)

where NB is the number of boundaries of the triangulation.

As stated in the introduction, harmonic maps have been chosen for the parametrization
because they are easy to compute. As an example, the discrete Laplacian harmonic map can

†For example, a sphere has a genus G = 0 and NB = 0, a disk has G = 0 but NB = 1 and a torus has G = 1
and NB = 0
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4 E. MARCHANDISE

be computed as follows:




∆εu = 0, ∆εv = 0 in T ,
u = uD, v = vD on ∂T1,
∂nu = 0, ∂nv = 0 on ∂T \∂T1

, (3)

where ∆ε denotes the discrete Laplacian operator than can be easily computed with piecewise
linear finite elements, and uD(x) is the value for the Dirichlet boundary conditions. Figure 1
shows for example such a parametrization for a triangulation of a cylinder. The triangulation
has two boundaries NB = 2 and the lowest one is mapped onto the circle of the unit disk by
imposing uD(x) = cos(2πl(x)/L) and vD(x) = sin(2πl(x)/L), with l denoting the curvilinear
abscissa of a point along the boundary ∂T1 of total length L (red arrow in Fig. 1).

∂T2

y

u(x)

v

u

∂T1

x

z

T ∗
T

Figure 1. Parametrization. A piecewise linear map creates a correspondence between a 3D surface
mesh T and a 2D mesh T ∗ of same topology (G = 0, NB = 2, η = 2), mapping each triangle from R3

to R2.

When going from continuous harmonic maps to linear discrete harmonic maps (3), three
different issues can arise. The first issue concerns undistinguishable mapping coordinates. As
shown in Fig.1 and as explained in [1] the solution of the mapping becomes exponentially
small for vertices located away from ∂T1. As a consequence, local coordinates u and v of those
distant vertices might numerically become indistinguishable. By deriving an analytical solution
of Laplacian harmonic maps for cylinders, we showed in [1] that the geometrical aspect ratio
of the surface η should be reasonable to be numerically able to distinguish the coordinates.

η =
H

D
< ηmax, (4)

where H is the maximal geodesic distance between a mesh vertex and a boundary vertex of
∂T1 and D is the equivalent diameter of the boundary ∂T1. As the distance on the 3d mesh
is not straightforward to compute, an upper and lower bound for η is computed. The upper
bound for η is computed by using the analytical expression for cylinders: η = 2πA/L2

∂T1
,

where A is the area of the 3D surface mesh and L∂T1 is the arc length of the boundary ∂T1.
The lower bound is estimated by choosing for H the maximal size of the oriented bounding
box of the 3D surface mesh and for D the maximal size of the oriented bounding box for
the boundary curve ∂T1. The oriented bounding boxes are computed with the fast Oriented
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HIGH QUALITY SURFACE REMESHING USING HARMONIC MAPS: PART II 5

bounding box HYBBRID optimization algorithm presented in [15] which combines the genetic
and Nelder-Mead algorithms [16].

As we showed in [1] that η = 4 corresponds to an area of mapped triangles of about
r2i = 10−10 (see Eq. (23) and Fig. 10c in [1]), we choose ηmax = 4 as upper limit for the
geometrical aspect ratio of the 3D surface mesh. A second issue is about triangle flipping. As
the discrete harmonic map has no guarantee to be one-to-one, we suggested in [1] a local cavity
check algorithm that locally modifies mesh cavities in which flipping occurs. In the case the
algorithm fails, we suggest to switch to a guaranteed one-to-one convex combination mapping
introduced by Floater [17, 18]. This convex combination is not used as default mapping
since the metric tensor associated with this mapping is much more distorted than the one
obtained with the harmonic mapping and hence the resulting new mapped mesh is of lower
quality. Finally, the last issue concerns triangle flipping that might occur when computing
linear conformal maps with open boundaries. Indeed, a linear algorithm cannot guarantee
that no triangle folding will occur. To remain efficient in the context of surface remeshing, we
use an idea similar to the one suggested by Sheffer et al. [5] that checks the presence of edge
folding.

In this section, we have put to the fore in the context of discrete harmonic mapping
three limitations, namely limitations on the genus G, the number of boundaries NB and the
geometrical aspect ratio η. Those three criteria can be summarized as follows:

i) G = 0;

ii) NB ≥ 1; (5)

iii) η < ηmax.

In the next section, we will first consider a disk-like surface (G = 0, NB ≥ 1) and present
a novel max-cut partitioning algorithm for those family of surfaces. We will then present an
automatic approach for arbitrary genus surfaces that combines this novel algorithm with a
multilevel partitioning algorithm.

3. Multiscale Laplace partitioning method

The multiscale algorithm that we present here is an extension a method proposed in [10]
that aims at building area-balanced maps. Recall briefly the idea of the max-cut partitioning
algorithm of Alliez and his co-authors. Consider the cylindrical surface of Figure 1. In the
parametric plane (u, v), elements far from the boundary ∂T1 have areas that rapidly tend to
zero: the map is not area-balanced. The method proposed in [10] is to build a split line in the
parametric plane. If we assume that every vertex ui(ui, vi), i = 1, . . . , N of the triangulation
has a unit weight, it is possible to compute both the center of gravity uc =

∑
i ui/N and the

axes of inertia of the set of vertices as the eigenvectors of

J =

[ ∑
i(u

c
i − ui)2

∑
i(u

c
i − ui)(vci − vi)∑

i(u
c
i − ui)(vci − vi)

∑
i(v

c
i − vi)2

]
.

The split line considered by Alliez et al. passes through the center of gravity and has the
direction of the principal axis of inertia. It splits the surface in two parts and produces a
quality partitioning of the surface. This “max-cut” partitioning algorithm enables to partition
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6 E. MARCHANDISE

a non-closed triangulated surface mesh that has a large geometrical aspect ratio (think of
arteries, bunny ears, lungs) into two parts. The two mesh partitions can then be subsequently
remeshed by computing two different parametrizations. Yet, the method relies on the fact that
it is possible to classify triangles in 2D with respect to the partition line. When the aspect ratio
is too high, the nodes that are located far away from the Dirichlet boundary have coordinates
that cannot be distinguished: it may be impossible to determine if a node is either on the left
or on the right of the partition line. Moreover, because of the finite precision of linear system
solvers, the mesh in the parameter space may become invalid.

Consider a cylinder of height H and diameter D with an aspect ratio η = H/D = 25.
Applying Alliez’s method with a geometry with that kind of aspect ratio leads to the generation
of a mesh that is incorrect in the parameter space. Figure 2 shows the result of the harmonic
map parametrization into the unit circle. Triangles get smaller and smaller when they get close
to the center of the circle. Figure 2 shows all triangles that have areas smaller than 10−15.
Those small triangles correspond roughly to 30% of the total amount of triangles of the mesh.
The center of gravity uc is situated too high so that the split does not partition the mesh in
an optimal way, as it is depicted on Figure 2.

Figure 2. Partitioning a cylinder of aspect ratio η = 25. Left figure shows the mesh in the parameter
space with the computed split line. Center figure shows a zoom in the parameter space with all
triangles of size smaller than 10−15. Right figure shows the (incorrect) partitioned mesh that relies on

the split line.

The behavior of Alliez’s method can become erratic for more complex geometries. Consider
the example of Figure 3. Here we consider the geometry of an aorta with an aspect ratio
η ' 17‡. The surface has NB = 13 boundaries. The image of the partition line is far from
being smooth in the real space and the resulting partition is not usable.

Here, we propose a multiscale partitioning algorithm that is a generalization of the
partitioning algorithm of Alliez et al. Consider a surface with a high aspect ratio. The elements
of the parametric plane that have too small areas form m clustered regions of the plane. Figure

‡the geometry has been downloaded from the simbios web site https://simtk.org/frs/download.php?file_
id=662
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HIGH QUALITY SURFACE REMESHING USING HARMONIC MAPS: PART II 7

Figure 3. Partitioning an aorta of aspect ratio η = 17 with NB = 13 boundaries using the area
balanced partitioning method of Alliez. Top left figure shows the mesh in the parametric space. The
color indicates the area distortion map, that is, the ratio between the area of each triangle in the 2D
space and the triangles area in the 3D space. The black line shows the partition line that should split
the mesh into two area balanced mesh partitions. However as can be seen on the left middle figure,
the mapping could not be computed correctly due to numerical round-offs errors and triangles have

been flipped. The resulting mesh partition is presented in the right figure.

4 shows an illustration of the first step of the multiscale partitioning algorithm for a mesh of
an aortic artery.

Each of those m subregions can be translated to its center of gravity and rescaled so that
its bounding box is of size 1. A new map per subregion can therefore be computed. The latter
procedure can be applied recursively to those m subregions until every element of the map
has a computable (i.e. sufficiently large) area. At the end, a split line is defined through all
levels of the recursion, leading to a procedure that splits the surface into two parts that can
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descending aorta

carotid artery

innominate

aortic
arch

subclavian

artery

artery

T ∗0,good

T 0,good

T ∗0,small
3

T ∗0,small
1

T ∗0,small
2

Figure 4. First step of the multiscale partitioning algorithm for the geometry of an aorta. The triangles
that have a too small area in the parametric plane define here two clustered regions. Those regions
are then withdrawn from the parametrization. The three small white regions visible in the parametric
space T 0,small

i , i = 1, ..., 3 correspond respectively in the 3D space to the subclavian artery, the carotid
artery, and the descending aorta.

be easily parametrized i.e. for which no element is far from the unique boundary.
Our multiscale partitioning method is based on the computation for n levels of discrete

Laplacian harmonic maps (denoted uij(x), i = 0, ..., n) and reads as follows (see Fig. 5):

1. At Level 0. Parametrize the surface triangulation T with a Laplace harmonic map u00(x)
and a Dirichlet boundary condition that maps one of the boundaries of the mesh ∂T1 onto
the unit circle (red line on Fig.5). The parametrization is computed as the solution of the
PDE’s equations (3) that are discretized with linear finite elements on the initial STL
triangulation (see paper [1] for more details about the harmonic mapping computation).

2. The triangles that have an acceptable size are tagged in the parametric space as T ∗0,good
(corresponding to T 0,good in the real space). See for example the blue part of the geometry
on Fig. 5. The triangles that have a mapped area smaller than Amin

2D = 1.e−10 are

withdrawn from level 0 and are put in sets of connected small triangles T ∗0,small
j , j =

1, ...,m. In the case of Fig. 5, there are three sets (m = 3) of connected small triangles
for level 0§.

3. At Level 1j. For each connected triangulation T 0,small
j , define the parametrization u1j(x)

with a Laplace harmonic map and a Dirichlet boundary condition that maps the

§Note that the pathological sets of triangles which contain only very few triangles are not taken into account.
The triangles belonging to those sets are then tagged as T ∗0,good.
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HIGH QUALITY SURFACE REMESHING USING HARMONIC MAPS: PART II 9

boundary T 0,good ∩ T 0,small
j onto the polygon defined in the 2D parametric space at

level 0: uD = αu0(x). Note that this polygon is scaled with a parameter α that is such

that the equivalent diameter for T ∗0,small
j has a value of 1.

4. For the levels i = 2, ..., n, repeat step 2 and 3 by replacing level 0 and 1 respectively by
level i− 1 and i until the set of small elements at level i (T ∗i,small

j ) is empty.

5. Define in the parametric space a splitting line that connects recursively the center of
gravities of the small mapped connected triangles T ∗i,small

j to the left and right of the

unit disk. For the last level, we take either the barycenter of the elements T ∗i,goodj or the
centers of the closed loops inside the 2D mapping (see for example mapping 11 and 30
in Fig. 5).

It must be noted that the multiscale procedure defined here somehow aims at computing one
single harmonic mapping with a machine precision that exceeds the double precision. Some of
the sub-problems consist in mapping 3D sub-triangulations onto non convex regions: this, in
principle, does not guarantee those sub-mappings to be one-to-one. Yet, boundary conditions
of the sub-problems arise from upper recursion levels, in a way that the global multiscale
problem aims at solving one single harmonic map from S onto a unit circle (which is convex).
This proves that every sub-problem will be well posed and will provide sub-mappings that are
one-to-one.

This new multiscale partitioning method has allowed us to partition rather complex surfaces,
with very high aspect ratios and a large number of boundaries. Figure 6 presents two
examples of the multiscale partitioning algorithm applied to biomedical geometries. A correct
partitioning of the aorta of Figure 5 is presented.

We have also run our algorithm for a more complex case: the geometry of human airways of
very large geometrical aspect ratio η = 89 (Figure 6, right). Segmentation of the lung models
is performed on low dose CT images, voxel size of 0.5mm, using the commercially available
Mimics software package (Materialise, Belgium). A semi-automatic segmentation algorithm
places all identifiable airway branches in a separate mask. The smooth 3D models are generated
from the segmentation masks. These models include upper airways, all central airways, and
the distal airways with a minimal diameter of 1− 2mm. This corresponds to terminal airways
in the 5th-9th generation. The smoothed models are cut perpendicular to the airway centerline
to provide well defined inlet and outlet surfaces. The resulting STL triangulation of the lung
models satisfies the topological conditions (5) (i)-(ii)(G = 0, NB = 147) so that our multiscale
approach can be applied. In what follows, a recursion depth of n = 15 has often been reached.

4. Automatic remeshing

In this section, a fast and automatic algorithm is developed that overcomes the three
topological and geometrical limitations of harmonic maps (see conditions (5)).

Topological conditions (i) and (ii) require the surface to have a genus G = 0 and at least one
boundary (NB ≥ 1). The way to go is to split the surface into partitions that have the right
topology. If G > 0, then it can be shown that it is possible to define G independent cuts that
divide the surface into subsurfaces that all have G = 0. There exist specialized computational
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Figure 5. Multiscale Laplace partitioning method of an aorta(G = 0, NB = 13, η = 17). In this
example there are n = 6 different levels on which harmonic maps are computed. The red line shows
the partition line that recursively splits the mesh into two area balanced mesh partitions (see the

resulting mesh partition in Fig.6 ).
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a) b)

Figure 6. Examples of the multiscale Laplace partitioning method applied to geometries with large
geometrical aspect ratio η: a) aorta (η = 17) and b) human airways (η = 89).

homology algorithms that aim at constructing such a minimum set of cuts [19]. Yet, those
algorithm are usually slow (they act on a coarsened version of the triangulation, with the
same topology and use a greedy algorithm to determine the cuts) and they do not always
produce optimal cuts in term of their “shape”. Here, we look at simpler solutions, even if more
than G cuts are used. We use a multilevel edge partitioning software such as Chaco [20] or
Metis [21] and partition recursively the triangulation into a minimal number of partitions that
satisfy the topological and geometrical conditions. For the geometrical condition (iii) to be
satisfied, we use the partitioning method based on the above presented multiscale harmonic
map.

The automatic procedure for remeshing a triangulation T is illustrated in Figure 7 and reads
as follows:

1. First, check conditions (i)-(ii) by computing the genus of the triangulation using (2) and
the number of boundaries NB . If the topological conditions are not satisfied, recursively
split the mesh with the multilevel partitioning method until satisfied.

2. Next, check condition (iii) by computing approximately the geometrical aspect ratio η
from the analytical expression for cylinders of height H and diameter D: η = H/D ≈
πA/L2, where A is the area of the triangulation and L is taken to be the maximal
curvilinear length of all the closed boundaries of the triangulation (L = 2πR for the
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a) b) c)

Figure 7. Remeshing algorithm for a skull geometry. a) Initial triangulation (G = 2, NB = 0) that is cut
into different mesh partitions of zero genus, b) Remesh the lines at the interfaces between partitions,
c) Compute a harmonic map for every partition and remesh the partition in the parametric space

(u(x) coordinates visible for one partition).

cylinder). In case this condition is not satisfied, split the mesh into two parts with the
multiscale laplacian partitioner defined in the previous section.

3. Compute an armonic mapping for every mesh partition.

4. Remesh the lines that are the boundaries of the triangulation and the interfaces between
the mesh partitions (see the interfaces between colored patches in 7a that are marked
with thick white lines in Fig.7b). Those lines are defined as model edges and divided into

N parts as follows: N =
∫ L
0
||x,t|| /δdt, where δ is the prescribed mesh size field. The

remeshed lines are embedded in the final mesh (see Fig. 7c).

5. Use standard surface meshers to remesh every partition in the parametric space and map
the triangulation back to the original surface.

6. If a volume mesh is needed, generate a volume mesh from the new surface mesh using
standard volume meshing techniques (frontal and Delaunay meshers are available in
Gmsh).

The automatic procedure is implemented within the open source mesh generator Gmsh [2].
Examples of how to use it can be found on the Gmsh’s wiki: https://geuz.org/trac/gmsh¶.

¶Access the wiki with username gmsh and password gmsh
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a) b) c)

Figure 8. Remeshing of an arterial tree (G = 0, NB = 7, η = 28). The initial mesh is first split into two
parts using the multiscale Laplacian partitioning method. Each of those two parts is then mapped in

the parametric space by computing (a) a Laplacian harmonic map (b) and a conformal map (c).

5. Results

The first example on Fig.8 shows two different types of harmonic mappings (Laplacian and
conformal) for an idealized arterial tree. The geometry has genus G = 0 and NB = 9
boundaries, so hat the topological conditions are satisfied. However, the geometrical aspect
ratio η is too high η = 28. Therefore, the input mesh has been partitioned into two parts with
our multiscale Laplacian partitioning method. The mapped meshes are presented in Figs. 8b)
and c). The mapped mesh obtained with the Laplacian harmonic map onto a unit disk presents
lots of mesh distortion while the one obtained with the conformal mapping gives a less distorted
parametrization and mesh metric. The remeshing being performed in the parametric space,
it is important to keep in mind that the 2D meshing algorithms are more efficient with less
distorted mesh metrics. Meanwhile our Gmsh’s 2D meshing algorithms (Gmsh MeshAdapt,
Delaunay and Frontal) are able to deal with a mesh distortion such as presented in Fig.8b.

The next example presented in Fig. 9 illustrates a uniform remeshing of a human pelvis
that has genus G = 9 and that is a closed surface , i.e. NB = 0. We compare the quality of
the initial STL triangulation (obtained through a segmentation procedure) with the quality of
the remeshed pelvis based on a laplacian harmonic map. The quality of the isotropic meshes
is evaluated by computing the aspect ratio of every mesh triangle as follows [2]:

κ = α
inscribed radius

circumscribed radius
= 4

sin â sin b̂ sin ĉ

sin â+ sin b̂+ sin ĉ
, (6)
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â, b̂, ĉ being the three inner angles of the triangle. With this definition, the equilateral triangle
has κ = 1 and degenerated (zero surface) triangles have κ = 0. For the example of the pelvis,
it is observed that the mean κ̄ and minimum quality κmin of the new mesh are both very high:
κ̄ = 0.94, κmin = 0.62. Besides, the mean quality measure is found to be constant (±2%) for
all examples and hence independent of the initial triangulation and the mesh density.

Remeshed
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Figure 9. Remeshing of a human pelvis with a harmonic map (G = 8, NB = 0). The left figure shows
the remeshed surface and the right figure the quality histogram of both the initial STL file and the

remeshed surface based on a Laplacian harmonic map.

The initial STL triangulation is made of 25.836 triangles and the remeshed human pelvis
is composed of about the same number of elements (26.313 triangles). Figure 10 shows a pie
chart diagram of the time spent in the different steps of the automatic remeshing procedure
described in section 4. As can be seen in the diagram, most of the time is spent in the 2D
meshing algorithms. The time needed for the parametrization computed with harmonic maps is
only 5% of the total time, while the percentage of time needed for the partitioning (combination
of the multiscale and multilevel partitioning methods) is less than 20% for this mesh. The total
time for remeshing is 9s (on a MACBOOK PRO clocked at 2.4 GHz.) for this example. We also

Figure 10. Time spent in the different steps of the automatic remeshing procedure described in section 4
fr th mesh model of the human pelvis 25k triangles. The total time for remeshing is 9s.
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Remeshing Number of Partition Parametrization Total remeshing
partitions time (s) time (s) time (s)

LSCM Levy [7] (1.3Ghz) 23 30 95 −
Eck [3] (1.3Ghz) 88 - - 33.5
ABF++ Zayer [22] 2 - 13 -
LinABF Zayer [22] 2 - 2 -
Presented method (2.4Ghz)
* laplacian partitioner 2 16.7 1.4 25
* multilevel partitioner 10 7 1.4 14

Table I. Remeshing statistics and timings for the bunny mesh model of 70k triangles (new mesh of
25k triangles). Comparison (when available) of the presented method with other techniques presented

in the Computer Graphics community.

compare the proposed method with two other remeshing packages presented in the literature.
We first consider the well-known bunny mesh model of 70k triangles presented in Fig.11‖. The
original mesh has NB = 5 holes and its genus is G = 0. We compare in table I some statistics
and timings of our algorithm with the least square conformal map (LSCM) of Levy et al. [7],
with the multiresolution remeshing of Eck et al. [3] and with the angle based parametrization
(ABF) of Zayer [22]. The table as well the timings for our remeshing procedure considering
the two different partitioners.

Figure 11. Remeshing of the bunny mesh model of 70k triangles (G = 0, NB = 5). Left figure shows the
two partitions, middle figure shows the conformal harmonic parametrization that has been computed

for both mesh partitions and right figure shows the remeshed bunny with about 25k triangles.

Another standard test case that is used in the litterature is the feline mesh model of 50k
vertices (G = 0, NB = 0) presented in Fig. 12. Statistics on the remeshing procedure are
presented in table II. The first remeshing package we compare with is a remeshing method

‖The model can be downloaded at the following web site:
http://www.sonycsl.co.jp/person/nielsen/visualcomputing/programs/bunny-conformal.obj
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Mesh Vertices Min θ Mean θ L2 Error Remeshing time(s)

Original in [23, 24] 49 864 3.8◦ 40◦ -
Remeshed in [23, 24] 10 825 7.4◦ 48.3◦ 0.64% 74
Remeshed in [25] 256 − − − 900
Remeshed with presented method 12 946 11.6◦ 48.7◦ 0.53% 19

Table II. Remeshing statistics for the feline mesh model of 50k vertices (95k triangles) with the
remeshing time (new mesh of 25k triangles).

based on a local parametrization approach [23, 24] and the second approach is based on a global
parametrization approach with an atlas of open base charts that covers the base mesh [25].
Table II shows the statistics of the re-meshes of the feline model along with the computational
time for the remeshing procedure. The statistics are given in terms of the minimal angle of
the triangles. For a high-quality mesh, the minimum of these values should be no less than
θ = 10◦, and the average should be no less than θ = 45◦. We also present the geometrical
remeshing error as the Hausdorff distance normalized by the bounding box diagonal, obtained
using the Metro tool [26] and show the remeshing time. Results in table II show that our
approach, besides from generating meshes with the highest quality with respect to all criteria,
is more efficient in terms of computational time than the two other approaches.

Figure 12. Remeshing of the feline model (G = 0, NB = 0) of 50k vertices with the presented method.
Left figure shows the initial mesh that has been automatically partitionned into 13 patches and right

figure shows the remeshed feline model.

Optimization of surface triangulations is very important in the context of biomedical
geometries where the triangulations are constructed mostly from medical images through a
segmentation procedure. We further illustrate the capabilities of our algorithm by showing
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the remeshing of airways models presented in Figs.13 and 14. The presented algorithm is
compared with the meshing algorithm of Mimics. Mimics uses a two step mesh adaptation
strategy in order to optimize the initial STL triangulation: in a first step three iterations of
remeshing improve skewness to a minimal value of 0.4. In this step the maximal edge length is
set to 0.5mm and the maximal geometrical error to 0.01mm. Hereafter a quality preserving
triangle reduction is performed. Again three iterations are done with a maximal edge length
set to 0.5mm and the maximal geometrical error set to 0.05mm. This provides the final
remeshed model with Mimics. In comparison, our technique relies on a multiscale partitioning
of the airway models into two parts of moderate geometrical aspect ratio. Each of those two
parts is then parametrized using a harmonic map and the remeshing is then performed in the
parametric plane using standard 2D meshing algorithms (MeshAdapt, Delaunay or frontal). As
can be seen in Figs.13 and 14, the quality of the meshes obtained with a remeshing procedure
based on a harmonic map is much higher than with the mesh adaptation strategies (such as
the one implemented in Mimics).

a) b) c)

Figure 13. Remeshing of human lungs: a) part of the initial STL triangulation, b) remeshed geometry
with Mimics (after 2 steps) and c) remeshed lung based on the Harmonic mapping remeshing

procedure.

The next example presented in Fig. 15 shows parts of the initial STL mesh of a complete
aorta illustrated in Figs. 5 and 6 and the mesh after the remeshing procedure. The remeshing
procedure aims at removing the very small elements present in the initial mesh at the junctions
of the arteries. The remeshing has been performed by first partitioning the mesh using the
multiscale partitioning method. The two resulting mesh partitions are then suitable for the
computation of harmonic maps and the remeshing procedure is finally performed in the
parametric space.

Remeshing with parametrizations based on harmonic maps can also be very interesting
for computational mechanics. In many cases, the surfaces are designed using a CAD system
composed of multiple patches. When their sizes are of the same order of magnitude as the mesh
size, those patches can result in very distorted mesh elements and impact dramatically on the
quality of the boundary layer mesh and, hence, the CFD solution. For those small patches, the
remeshing based on cross-patch parametrization enables to remove the small elements present
in the cad-based meshes.
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Remeshed Harmonic map
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Figure 14. Remeshing of human lungs with the presented algorithm as compared with a commercial
package such as Mimics.

Figure 16a shows a zoom of an initial mesh of a landing gear consisting of about 106

triangular mesh elements composed of 852 different patches. For this example, the small
elements presented in the initial cad-based surface mesh (see for example Fig.17a) prevented
us to build any CFD volume boundary layer mesh. Thanks to the cross-patch parametrization
(Figs. 16b and 17b), we were able to reduce the number of patches to only 291 surface patches
and build a suitable CFD boundary layer mesh of 12M nodes for that model (Fig. 19).

Figure 18 shows the the quality histograms of the two surface meshes: the cad-based mesh
and remeshed mesh. We can see that the very small elements have been removed during the
remeshing procedure. A preliminary computation has been done using the in-house flow solver
developped at Cenaero [27]. The flow Reynolds number based on the diameter of the shock
strut is Re = 73000 and the Mach number is Ma = 0.166. The flow is supposed to be fully
turbulent. As the mesh is not fine enough to capture correctly all the turbulent scales, a Delayed
Detached-Eddy Simulation [28] (DDSS) turbulence model is used. The DDES is a hybrid
RANS (Reynolds-Averaged Navier Stokes)/LES (Large Eddy Simulation) method which uses
a RANS modelling in the attached boundary layer and a LES model for the detached flow. The
simulation ran on 200 CPU and the time needed to compute one convective time (tc = L/Uc)
is 3 hours. Fig. 20 shows the instantaneous pressure on the surface of the landing gear. An
improvement of the volume mesh is in progress in order to obtain a better representation of the
wake. The results will be used to measure, with an acoustic solver, the sound created by the
landing gear. This case has been studied within the frame of the BANC (Benchmark problems
for Airframe Noise Computations) Workshop.

The definition of the patches to be cross-parametrized is performed by the user but takes
few time regarding the complexity of the CFD computations. For the industrial example of
the landing gear, the definition of the new patches and the remeshing takes only 1 hour on
1 CPU compared to 3 hours on 200 CPU for the CFD simulation. Besides, as the remeshing
method based on cross-patch parametrization is fast and simple, it can be easily integrated
and automated in an industrial CFD computation chain.
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Figure 15. Remeshing of a the aortic artery presented in Fig. 5. We show parts of the mesh near the
bifurcations before (left figures) and after (right figures) the remeshing procedure based on a Laplacian

harmonic map.

6. Conclusion

In this work, we have presented a fully automatic approach based on harmonic mappings
for remeshing surfaces that overcomes the limitations of harmonic maps: namely limitations
on the geometrical aspect ratio and on the genus of the surface. The approach is original as
it combines an novel multiscale harmonic partitioning method with a multilevel partitioning
algorithm to come up with an automatic remeshing algorithm that overcomes the limitations
of harmonic maps. With the present approach, we are able to remesh any surface with any
topological genus and with large geometrical aspect ratios. We showed that the remeshing
procedure produces high-quality meshes and that it can be used for fairly complex biomedical
and industrial applications.
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a) b)

Figure 16. Cross-patch remeshing of a landing gear (with patches of G = 0, NB = 1). The left figures
a) show a surface mesh that is made of 582 geometrical patches and the right figures b) show the
remeshed surface made of only 291 patches. The remeshed patches are computed using cross-patch

parametrization.
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a) b)

Figure 17. Remeshing of a landing gear. Left Figure shows a part of the initial mesh with many patches
and right Figure shows the mesh with the reparametrized patches.
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Figure 18. Quality histogram for the remeshing of a landing gear. The left figure shows a zoom for
range of small aspect ratio κ ∈ [0 : 0.1] and the right figure the whole range of aspect ratio κ ∈ [0 : 1].
As can be seen, the remeshing procedure has removed the small elements by merging different patches

using a cross-patch parametrization.
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SUMMARY

This work describes an automatic approach to recover a high-quality surface mesh from low-quality or
oversampled inputs (STL-files) obtained from medical imaging through classical segmentation techniques.
The approach combines a robust method of parametrization based on harmonic maps (Int. J. Numer. Meth.
Engng. 2009; accepted) with a recursive call to a multi-level edge partitioning software. By doing so,
we are able to get rid of the topological and the geometrical limitations of harmonic maps. The overall
remeshing procedure is implemented, together with the finite element discretization procedure required for
computing harmonic maps, in the open-source mesh generator Gmsh (Int. J. Numer. Meth. Engng. 2009;
79(11):1309–1331). We show that the proposed method produces high-quality meshes and we highlight
the benefits of using those high-quality meshes for biomedical simulations. Copyright ! 2010 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In the biomedical field, geometrical data are acquired through medical imaging techniques such
as CT scan or MRI. The data are then usually given to end-users as an STL triangulation that
comes as the output of a surface reconstruction algorithm applied to the point cloud obtained from
the medical images [1]. Those generated STL triangulations can serve as input for most volume
meshing algorithms [2, 3]. Yet, those STL triangulations are generally oversampled and of very
low quality, with poorly shaped and distorted triangles. This is still to date a major bottleneck
in the domain of biomedical computations since the quality of the mesh impacts both on the
efficiency and the accuracy of numerical solutions [4, 5]. For example, it is well known that for
finite element computations, the discretization error in the finite element solution increases when
the element angles become too large [6], and the condition number of the element matrix increases
with small angles [7]. It is then desirable to modify the initial surface mesh to generate a new
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surface mesh with nearly equilateral triangles or with a smooth gradation of triangle density based
on the geometry curvature. This procedure is called remeshing.

There exist mainly two approaches for surface remeshing: mesh adaptation strategies [8–10] and
parametrization techniques [11–16]. The mesh adaptation strategies belong to the direct meshing
methods and use local mesh modifications in order to both improve the quality of the input surface
mesh and adapt the mesh to a given mesh size criterion. The parametrization techniques belong to
the indirect meshing approach. The initial 3D surface mesh is first parameterized onto a 2D planar
surface mesh; the initial surface can then be remeshed using any 2D mesh generation procedure
by subsequently mapping the new mesh back to the original surface.

When a parametrization of the surface is available, it is usually better to use it for remeshing.
Indeed, when a parametrization is available, ensuring that the surface mesh has the right topology
is trivial. Also, as the medical geometries are often highly oversampled and are of very poor
quality, the numerous sampling operations are much more efficient in the parameter plane than in
3D space.

In a recent paper [17], we have introduced an efficient approach for high-quality remeshing
of surfaces based on a parametrization technique. The approach uses a discrete finite element
harmonic map to parameterize the input triangulation onto a unit disk. By combining it with a local
cavity check algorithm that enforces the discrete harmonic map to be one-to-one, we came out
with a robust method for remeshing that is advantageous compared with mesh adaptation methods.
However, as it was highlighted in [17], there are two important limitations of harmonic maps,
namely limitations on the genus and the geometrical aspect of the surface. Indeed, to be able to
parameterize the triangulation onto a unit disk, the triangulation should be homeomorphic to a
disk, i.e should have a genus zero with at least one boundary. Besides, as the solution of harmonic
maps tends exponentially to a constant, the triangulation should have a uniform geometrical aspect
ratio to prevent non-distinguishable coordinates.

In this paper, we present a robust and automatic way to overcome the topological and the
geometrical limitations of harmonic maps. The presented algorithm combines a discrete harmonic
mapping with a multi-level edge partitioning software that recursively partitions the triangulation
into a small number of charts that satisfy the topological and geometrical constraints. We show
that our method renders high-quality meshes and highlight the benefits of using those high-quality
meshes for cardiovascular and bone biomechanical simulations.

2. MESHING WITH HARMONIC MAPS

The key feature of our remeshing algorithm presented in [17] is to define a map that transforms
continuously a surface S∈R3 into a unit disk S′ embedded in R2 [18, 19]. The parametrization
should be a bijective function u(x):

x∈S⊂R3 %→u(x)∈S′ ⊂R2. (1)

Such a parametrization exists if the two surfaces S and S′ have the same topology, i.e are both
zero genus surfaces (G =0) and have at least one boundary (NB!1).‡ When the surface S is
a triangular mesh as in the case of an STL file, the genus can be easily computed from the
Euler–Poincare formula:

G = −NV + NE − NT +2− NB

2
, (2)

where NV, NE and NT are, respectively, the number of vertices, edges and triangles.
Harmonic maps have been chosen for the parametrization [20, 21], by solving one Laplace

problem for each coordinate:

∇2u =0, ∇2v=0, (3)

‡For example, a sphere has G =0 and NB =0 and a torus has G =1 and NB =0.
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Figure 1. STL triangulation of an arterial anastomosis (G =0, NB =3,!=5) and its map
onto the unit circle (Left) and mapped mesh on the unit circle (Right). As the geometrical
ratio of the initial STL triangulation is higher than 4, the mapped triangles become very

small (see zoom) in the parametric unit disk.

with appropriate Dirichlet boundary condition for one of the boundaries !S1 of the surface S,

u(l)=cos(2"l/L), v(l)=sin(2"l/L), (4)

and with Neumann boundary conditions for the other boundaries. In (4), l denotes the curvilinear
abscissa of a point along the boundary !S1 of total length L .

The discrete harmonic map is obtained through a finite element formulation of the Laplace
problem (3)–(4) on the STL triangulation. The finite element solutions provide to each internal
vertex of the original triangulation x its local coordinates u and v. However, as shown in [17]
the solution of the mapping becomes exponentially small§ for vertices located away from !S1.
As a consequence, local coordinates u and v of those far away vertices might numerically become
indistinguishable (see the zoom in Figure 1). To prevent this, the geometrical aspect ratio of the
surface

!= H
D

(5)

should be smaller than 4. Indeed, we can show that !=4 corresponds to an area of mapped triangles
of about r2

i =10−10 (see Equation 23 and Figure 10(c) in [17]). In (5), H is the maximal distance
(computed on the 3D surface S) of a mesh vertex to the boundary !S1 and D is the equivalent
diameter of the boundary !S1.

Figure 1 shows both an initial triangular mesh of S and its map onto the unit disk. The surface
S results from the segmentation of an anastomosis site in the lower limbs, more precisely a bypass
of an occluded femoral artery realized with the patient’s saphenous vein. The unit disk D contains
two holes that correspond to the boundary of the femoral artery !S2 and the saphenous vein !S3
on which we have imposed Neumann boundary conditions.

Once the parametrization is computed, we use standard 2D anisotropic mesh generation proce-
dures onto the unit disk, with the aim of producing a mesh in the real 3D space that has controlled
element sizes and shapes. In order to control the surface element sizes, we define an isotropic
mesh size field [22] #(x) that is a function that gives the optimal mesh edge length at point x.

§ In principle, the solution becomes constant far from the boundary, this constant being the average of the solution
on the boundary. Yet, the average of the solution on the boundary being zero, the solution goes to zero far from
the boundary.
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In the examples that will be presented, the mesh size field is chosen to be either a constant or
varies according to the curvature of the geometry.

3. AUTOMATIC QUALITY REMESHING

In the previous section, we put to the fore the topological and geometrical limitations of harmonic
maps. To sum up, for the proposed discrete harmonic maps we need

(i) G =0;
(ii) NB!1;

(iii) !<4.

The first condition can be verified using Equation (2); the second condition can be checked by
looking simply at the topology of the mesh. The third condition is less trivial to assess.

In the computer graphics community, people overcome all three conditions simultaneously by
using a partition scheme based on the concept of Voronoi diagrams [21] or inspired by the Morse
theory [16, 23]. The resulting mesh partitions are area-balanced patches that satisfy the three
conditions. However, this approach results in a large number of patches and hence a large number
of interfaces between those patches, which are not desirable.

We propose in this paper a fast and automatic way to overcome both topological and geometrical
limitations of harmonic maps. The idea is to combine an harmonic map with a multilevel edge
partitioning softwares such as Chaco [24] or Metis [25] to partition recursively the triangulation into
a minimal number of partitions that satisfy the topological and geometrical conditions. Multilevel
methods are attractive since they reduce the costs of spectral partitioning methods while still
generating high-quality partitions. These work on the connectivity graph of the mesh, but instead of
trying to split this directly, the graph is first condensed through a number of levels. The condensation
is achieved through clustering together vertices that are closed together to produce a graph with
fewer vertices. New edges between the clusters are weighted to reflect the number of edges that
existed in the larger graph. By using several levels of condensation a much smaller graph can
be obtained that is easily partitioned by a method such as spectral bisection. This partitioning
information can then be transferred up through the levels to the original graph.

The automatic procedure for a uniform remeshing a triangulation S with prescribed mesh size
# is illustrated in Figures 2 and 3 and reads as follows:

1. Check conditions (i)–(iii). If those conditions are not satisfied, recursively split the mesh
with the multi-level partitioning software until satisfied. The geometrical aspect ratio ! is
computed approximately by using the ratio between the maximal size of the bounding box
of the mesh partition and the maximal size of the bounding box of the boundaries !S of the
mesh partition [26] (see illustration in Figure 3(1));

2. Remesh the lines that are the boundaries of the triangulation and the interfaces between the
mesh partitions (see the interfaces between colored patches in 2(a)) that are represented by
highlighted white lines in Figure 2(b)); Those lines are defined as model edges and divided
into N parts as follows: N =

∫ L
0 ‖x,t‖/#dt . The remeshed lines are embedded in the final

mesh shown in Figure 2(c)).
3. Compute the harmonic mapping for every mesh partition as explained in the previous section.

If the boundary is composed of several parts !Si , assign the Dirichlet boundary conditions
(4) to the closed boundary that has the largest bounding box.

4. Use standard surface meshers to remesh every partition in the parametric space and map the
triangulation back to the original surface.

5. If a volume mesh is needed, generate a volume mesh from the new surface mesh using
standard volume meshing techniques.

In our algorithm, the bounding boxes are oriented bounding boxes that are computed with the fast
Oriented bounding box HYBBRID optimization algorithm presented in [26], which combines the
genetic and the Nelder–Mead algorithms [27].
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(a) (b) (c)

Figure 2. Remeshing algorithm: (a) initial triangulation (G =2, NB =0) that is cut into different
mesh partitions of zero genus; (b) remesh the lines at the interfaces between partition; and
(c) compute harmonic map for every partition and remesh the partition in the parametric space

(u(x) coordinates visible for one partition).

(a) (b) (c)

Figure 3. Remeshing algorithm: (a) initial triangulation (G =0, NB =3,!= H/D =16) that is cut into
different mesh partitions of uniform geometrical aspect ratio; (b) the harmonic map is computed for every
partition (u(x) coordinates visible for one partition); and (c) remesh every partition in the parametric

space. The mapped initial triangulation is shown for the partition visible on the middle image.

The automatic procedure is implemented within the open-source mesh generator Gmsh [22].
We show a simple example of how to use it. We suppose that we have an initial surface mesh and
write the following geometry file ‘remesh.geo’:

// Merge the STL triangulation
Merge "skull.stl";

// Remesh the edges (if any), and faces with the presented algorithm
Compound Surface(100) = {1};

// Create a volume and mesh given the new surface mesh
Surface Loop(2) = {100};
Volume(3) = {2};

Other examples can be found on the Gmsh wiki: https://geuz.org/trac/gmsh (username: gmsh,
password: gmsh).
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4. RESULTS

4.1. High-quality surface and volume meshes

We have run our computational algorithm on a variety of medical geometries of arbitrary genus
and complexity. Figure 4 illustrates a uniform remeshing of, respectively, a skull, an upper jaw
and a hemipelvis. The top figure shows the remeshing of a human skull, the middle figures the
remeshing of an upper jaw that is oversampled (116 k vertices) and the lower figures the remeshing
of an initial poor-quality mesh of an hemipelvis. None of those initial triangulations satisfy the
topological conditions: the skull has genus G =2, the jaw has genus G =0 but has NB =0 and the
pelvis has G =1 and NB =0.

Figure 4. STL triangulations obtained from medical images (Left) that have been automatically remeshed
with our automatic remeshing algorithm (Right).
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Figure 5. Plot of the quality histogram of both the STL triangulation and the
remeshed surface of a scanned foot.

The quality of an isotropic mesh is evaluated by computing the aspect ratio of every mesh
triangle as follows [22]:

$=%
inscribed radius

circumscribed radius
=4

sin â sin b̂ sin ĉ

sin â+sin b̂+sin ĉ
, (6)

â, b̂, ĉ being the three inner angles of the triangle. With this definition, the equilateral triangle has
$=1 and degenerated (zero surface) triangles have $=0.

Figure 5 shows the quality histogram for the initial triangulation of a foot and the remeshed
geometry. As seen in Figure 5, the mean $̄ and minimum quality $min of the new mesh are both
very high: $̄=0.94, $min =0.62. This mean quality measure was found to be constant (±2%)
for all examples and hence independent of the initial triangulation and the mesh density. Volume
tetrahedral meshes can then be created from those surface meshes. In order to measure the quality
of the tetrahedral elements, we define another quality measure & based also on the element radii
ratio [22, 28]:

&= 6
√

6V
SFLE

,

V being the volume of the tetrahedron, SF being the sum of the areas of the four faces of the
tetrahedron and LE being the sum of the lengths of the six edges of the tetrahedron. This & quality
measure lies in the interval [0,1], an element with &=0 being a sliver (zero volume). When creating
volume meshes from surfaces that have been remeshed with our algorithm, we obtain also quite
constant & qualities, i.e &min =0.25±10% and &̄=0.7±10%. This is much better than the gamma
quality of volume meshes created from STL triangulations. Indeed the quality of those volume
meshes is often very poor, with elements being small slivers &min<1 ·e−5 that will hinder or event
prevent the convergence of the numerical method.

The time necessary to generate with our algorithm a new surface mesh less is less than 100 s
for 106 elements.

4.2. Quality meshing for biomedical simulations

The two first biomedical simulations concern blood flow simulations. In the first example, blood
flow in a distal anastomosis of a bypass is considered. While this problem has often been studied
in vitro in simplified geometries [29–31], the simulation of blood flow in in vivo complex geome-
tries is of great interest when one wants to focus on the patient-specific aspect [32]. As this is
not the goal of this study, we refer the reader to the cited references for detailed hemodynamical
analysis. We intend to illustrate in the following test case that in real and complex geometries, a
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Figure 6. Blood flow simulation in an arterial bypass. The left figure shows the streamlines (zoom near
the anastomosis) and the right figure shows the residual decrease for the two different volume meshes.

Table I. Quality of the surface and volume meshes.

Surface quality Volume quality

Mesh $min $ &min &

STL 0.0033 0.821 0.0019 0.563
Remeshed 0.6400 0.949 0.2550 0.677

high-quality mesh is required in order to ensure the numerical convergence of the simulation.
Identical conclusions have been reached in computational studies related to other biomedical appli-
cations and considering the effects of various meshing styles: Vinchurkar and Longest [33, 34]
have shown the performances of different types and qualities of meshes in the complex branching
geometries of the respiratory system; Liu et al. [35] compared simulations in the total cavopul-
monary connection using structured and unstructured meshes; Ethier and Prakash [36] studied a
mesh convergence study of blood flow in a coronary artery model.

In the following two test cases, blood flow is governed by the incompressible Navier–Stokes
equations for a Newtonian fluid. We use an implicit pressure-stabilized finite element method
that has been shown to be robust, accurate and stable [37]. The linearized system is solved
by using a GMRES solver with a relative convergence tolerance of 10−12. The fluid proper-
ties of blood are taken to be '=1060kg/m3 for the density and (=3.5Pas for the dynamic
viscosity.

The first test case studies steady blood flow at Reynolds Re=900 (based on the inlet diameter
and average inlet velocity) in a veinous anastomosis of an occluded femoral artery (Figure 6) [38].
The anastomosis is segmented out of raw image data from a patient who underwent lower-limb
bypass surgery. Two surface meshes are produced, one from the initial STL triangulation and the
other using the remeshing procedure based on harmonic maps. Those surface meshes then serve
as input for the generation of two volume meshes of about 104 tetrahedra (an STL-based and a
remeshed-based volume mesh). Table I shows the quality of these two surface and volume meshes:
the remeshed mesh presents higher minimal and mean qualities that enable the flow solver to
converge better (see Figure 6).

The simulation is run with a constant flow rate at the inlet (Q =75ml/min), a no-slip boundary
condition at the walls and a constant pressure boundary condition on the outlet surface (p=
50mmHg). Figure 6 shows the convergence rates for each of the two volume meshes. Figure 6
shows that the element quality has a significant impact on the convergence rate of the solution
procedure. Indeed, the simulation on the mesh obtained from the STL converges at 1 ·e−7, whereas
the remeshed mesh gives results that are two times more accurate.
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The next example studies the flow in a simplified aortic arch. The STL triangulation was found
on the INRIA web site.¶ Accurate and converged numerical simulations are mandatory since it
has been shown that the flow patterns and the locations of low wall shear stress (WSS) correspond
with locations of aneurysm formation in the descending aorta [39, 40]. The WSS is defined as the
norm of the shear stress at the wall:

WSS=‖+tw‖=‖+t −((+t · +n) · +n)‖ with +t =((∇+u+∇+uT) · +n. (7)

For the numerical simulation, we apply simple boundary conditions: a parabolic velocity profile
at the inlet (heart) and zero natural pressure boundary conditions at the outlets (innominate artery,
left common carotid artery, left subclavian artery and descending aorta) and a zero velocity (no-
slip) on the vessel walls. We consider a stationary flow at Reynolds Re=450 and different meshes:
isotropic volume meshes of, respectively, 28, 160 and 466 k tetrahedra and an adapted anisotropic
mesh that has approximately 20k. We fist compute an isotropic surface mesh with our remeshing
algorithm and then produce two different types of volume meshes: (i) isotropic volume meshes
of different prescribed mesh sizes, (ii) adapted anisotropic volume meshes and (ii) a boundary
layer mesh obtained by extrusion of the surface mesh over a number of layers (five layers in the
boundary #bl =1/

√
Re). Adaptive refinement in the boundary with either anisotropic metric fields

or boundary layers is indeed attractive [41–43] to increase the solution accuracy in the region
of interest (at the wall) and this way decrease the load on the solver by reducing the number
of finite elements used. With the presented approach of harmonic map, we do have a parametric
description of the initial triangulation that enables us to use anisotropic mesh adaptation libraries
such as our open-source MadLib library [44]. This library aims at modifying the initial mesh to
make it comply with criterions on edge lengths and element shapes by applying a set of standard
mesh modifications (edge splits, edge collapses and edge swaps, etc.). An anisotropic field based
on the distance to the wall and the curvature can then be defined in order to generate boundary
layer meshes. In the example presented in Figure 7(c)), we prescribe a small size with a linear
growth in the normal direction to the wall, and three times a larger size is prescribed in the tangent
directions. The final mesh metric field is built from those resulting sizes and directions. It should
be noted that a volume mesh was also produced from the STL triangulation, but this volume mesh
was of too low quality to obtain a convergence of the numerical simulation (&min =1.5e−5 and
&̄=0.45).

Figure 7 shows the initial STL triangulation, a remeshed isotropic surface mesh, and a mesh
cut of the volume anisotropic mesh. As can be seen, initial STL triangulation is faceted and the
horizontal structure of the CT slices are visible.

Figure 8 shows the WSS values computed for different meshes at section A− A′. We selected
section A− A′ since this section intersects the regions of low and high WSS. For this section,
the WSS values vary in the azimuthal direction, the zero angle corresponding to the location A′.
As can be seen in Figure 8, the high-quality isotropic volume meshes converge well toward an
azimuthal WSS distribution. The WSS for the anisotropic mesh exhibits more numerical noise
that is due to the velocity gradient computations involved in (7) that are less accurate for highly
anisotropic meshes [41–43]. Meanwhile, the mean values (max and min WSS) converge toward
the one obtained with the finest isotropic mesh within a smaller computational time (mesh of only
20k). The boundary layer volume mesh provides less oscillatory results and shows also convergence
toward the finest isotropic mesh for a reduced number of elements (50k versus 1.4M tetrahedra).

The last biomedical computation is the stress computation on a hemipelvis. The initial trian-
gulation (STL file) of the pelvic bone is obtained from a segmentation procedure of a sawbone
model that was scanned (CT scan with 1.25 mm thickness). Several isotropic surface meshes are
obtained with our automatic remeshing algorithm for different mesh refinements. We analyze the
influence of the mesh quality on the accuracy of the solution : five meshes obtained with the
uniform remeshing algorithm having, respectively, 420, 270, 70, 20 and 5k triangles, two meshes
that are adapted to the curvature with 54 and 8k triangles and three STL triangulations of 10, 5 and

¶http://www-c.inria.fr/Eric.Saltel/saltel.php.
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View b),c)

View
b),c)

(a) (b) (c)

Figure 7. Aortic arch meshes: (a) initial STL triangulation (top) and remeshed surface
(isotropic mesh size); (b) anisotropic volume mesh cut created from the remeshed surface

with MAdLib; and (c) boundary layer volume mesh.

Figure 8. Blood flow simulation in an aortic arch. The left figure shows the WSS distribution and the
right figure the WSS along the circumference at section A− A′ for different meshes for a constant inlet

flow rate. The zero angle corresponds to the location A′.

2k triangles (see Figure 9). The three different STL files are obtained with the meshLab software
by refining the triangles or collapsing the edges of the initial STL file of 5k triangles. As expected,
the mean quality is $̄=0.94 for the remeshed pelvis whereas $̄=0.66 for STL triangulations.
The curvature adapted meshes are computed by defining the mesh size # as follows:

#= 2"R
Np

with R = 1
$

(8)
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(a) (b) (c)

Figure 9. Different meshes used for the mesh convergence analysis: (a) triangulation on which
a curvature $ is computed; (b) isotropic remeshed pelvis (#=0.1); and (c) curvature-dependent

remeshed pelvis (# given by Equation (8)).

where $ is the curvature that is computed from the initial nodes of the STL triangulation with
the algebraic point set surface method (see Figure 9) that is based on the local fitting of algebraic
spheres [45] and Np is the number of points chosen for the radius of curvature (Np =15).

As far as the boundary conditions are concerned, the finite element model is constrained at
the sacro-iliac joint and a symmetry boundary condition is applied on the pubic-symphysis. The
pelvis is subjected to a 3D load case representative of a single leg stance. Taking a body weight
equal to 1000 N, the resulting surface traction force acting on the acetabulum surface is 0.7 MPa.
As different meshes are used, the elements forming the boundaries are selected inside a sphere
(for the acetabulum and the sacrum) and on one side of a plane (for the pubis) intersecting the
pelvis. These fixed boundary conditions are more representative of in vitro experimentation than
in vivo environment but are realistic enough for this analysis [46].

In order to put to the fore the effect of the surface mesh on the behavior of the numerical
solution, we analyze the stresses in the cortical bone by using shell elements on the surface of the
pelvis. This is well adapted for this analysis because the pelvis has a cortical shell that undergoes
most of the stresses. We model this cortical surface layer with a homogeneous shell section of
uniform thickness 2 mm, an isotropic Young modulus E =18000N/mm2 and a poisson ratio of
)=0.3 [47, 48].

The simulations are computed with the finite element solver Abaqus with linear finite elements.
Figure 10 shows the distribution of the Von-Mises stresses developed in the cortical bone with
the finest isotropic mesh. The stresses are concentrated around the cotyle and toward the fixed
boundary condition at the sacro-iliac joint. The maximum stresses are obtained around the cotyle
for the fine meshes, whereas the STL meshes produce higher stresses located above the illium.
These are local stress concentrations that appear in small elements, where no significant stress
should be present.

To determine the influence of the mesh quality on grid convergence, we consider the different
meshes and evaluate the L2-norm of the discretization error on a given h-mesh:

‖e‖2
L2 =

∫

!

3∑
j=1

(uh
j − ū j )2 d! (9)

where the subscript j denotes the j th component of the displacement vector and ū is the interpola-
tion of the displacement vector obtained with the finest mesh of 420k elements on the considered
h-mesh.

Figure 10 shows the grid convergence for the different meshes, where we can clearly see the
influence of the mesh quality on the convergence. The theoretical convergence for linear shell
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2

Figure 10. Von mises stress distribution in the cortical shell computed with the finest isotropic surface mesh
(Left) and influence of the mesh quality on the numerical convergence (Right). We show the L2-norm

of the discretization error as a function of the number of nodes for different meshes.

elements of order O(h2) is reached for our high-quality meshes, whereas the STL triangulations
present a much lower convergence O(h0.2) as well as a higher error for the same number of nodes.
The curvature adapted meshes are attractive since for the same discretization error, they present
less nodes. However, an adaptive mesh with a mesh size # given by a posteriori an error-estimator
would be better then a curvature-based adaptive mesh.

5. CONCLUSION

In this work, we have presented a fully automatic approach to recover a high-quality surface
mesh from low-quality oversampled inputs (STL files) obtained via 3D acquisition systems.
The approach is original as it combines an efficient and robust parametrization technique based
on harmonic maps [17] with a multi-level edge partitioning algorithm that partitions the mesh into
a small number of partitions. With the present approach, we are able to remesh any surface with
any topological genus and with large geometrical aspect ratio such as arteries. We showed that
the remeshing procedure is highly efficient and produces high-quality meshes that are suitable for
finite element biomedical simulations. We have presented several biomedical computations that
quantify the influence of the mesh quality on the convergence behavior.
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Appendix D

Abstract Post-Processing Interface

The post-processing module can load, transform and display multiple post-processing datasets
(called “views”) at once, along with the geometry and the mesh. Each view can contain a
mix of scalar, vector and tensor data as well as text annotations. Views can be manipulated
either globally or individually (each view has its own button in the GUI and can be referred
to by its index in a script), and each one possesses its own set of display options. Internally,
the view is an abstract class that can access a variety of underlying representations, from the
node-based data sets used in standard finite element codes to high-order, discontinuous data
sets used, e.g., in discontinuous Galerkin or finite volume solvers [24].

Scalar fields are represented by iso-surfaces or color maps, while vector fields are repre-
sented by three-dimensional arrows or displacement maps (see Figure D.1). The graphics
display code is written using OpenGL, and all representations are stored internally as vertex
arrays to improve rendering performance.

Display options are non-destructive (they do not modify the dataset) and can be changed
on the fly. These options include for example choosing the plot type and the number of iso-
surfaces to display, modifying the type and range of the scale and the colormap, or applying
complex geometrical transformations—changes of coordinates based on functional expres-
sions, e.g. to exploit symmetry or to apply an geometrical offset based on the values in the
dataset. In addition to the non-destructive display options, the post-processing module pro-
vides a plug-in architecture to enable the application of destructive modifications to views.
Gmsh ships with about thirty default plug-ins, that perform operations such as computing
sections, elevation maps and stream lines, extracting boundaries, components and time steps,
applying differential operators, calculating eigenvalues and eigenvectors, or triangulating point
datasets.

All the post-processing features can be accessed either interactively or through the script-
ing language, which permits to automate all operations, as for example to create animations.
Gmsh provides a large number of raster output formats, as well as vector output for high-
quality technical renderings using GL2PS [10], which is especially useful for 2-D scenes. Raster
files can also be created at sizes larger than what the screen resolution allows by using offscreen
rendering [19].
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cuts, iso-curves and vectors [2] elevation map
(K. A. Berger & B. Kubicek, Arsenal Research)

streamlines high-order solver interface
(P. Geuzaine, Cenaero) (Taken from Reference [24])

Figure D.1: Some images from the solver and post-processing modules.
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Appendix E

Documentation

E.1 Python and C++ clients

This section presents a snapshot of the Python and C++ documentation available on the
ONELAB website. See http://onelab.info/wiki/Python and http://onelab.info/wiki/

C++ for the most up-to-date information.
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Python
From ONELAB

Any Python script can become a native ONELAB client by importing the onelab.py module.

Contents
1 Getting started
2 How does it work?

2.1 Example
2.2 Common parameter attributes
2.3 Number attributes
2.4 String attributes

Getting started
1. Download and uncompress a recent version of Gmsh, or the Gmsh/GetDP bundle for Windows64

(http://onelab.info/files/gmsh-getdp-Windows64.zip) , Windows32 (http://onelab.info/files/gmsh-
getdp-Windows32.zip) , Linux64 (http://onelab.info/files/gmsh-getdp-Linux64.zip) , Linux32
(http://onelab.info/files/gmsh-getdp-Linux32.zip) or MacOSX (http://onelab.info/files/gmsh-getdp-
MacOSX.zip) .

2. Double-click on the Gmsh executable (gmsh.exe  on Windows).
3. Load the Python script (.py file) through the File/Open menu, e.g. load the pend.py

(http://onelab.info/files/pendulum/pend.py) example given below.
4. Click on Run.
5. ... that's it!

How does it work?
The Python ONELAB interface is implemented in a single Python module: onelab.py. This module comes
pre-installed with Gmsh, in the same directory as the Gmsh executable. When you open a ONELAB-enabled
Python solver with Gmsh, Gmsh automatically finds the onelab.py module. You can also install onelab.py in
any directory of your choosing; in this case don't forget to update your PYTHONPATH environment
variable.

Example
The following example (a simple Python solver for the double pendulum problem) highlights the main
features of the Python interface:

Direct link to file `pendulum/pend.py' (http://onelab.info/files/pendulum/pend.py)

To interact with ONELAB, the script must first import the onelab.py module:

import onelab

The script then creates a ONELAB client with:

c = onelab.client()

Creating the client connects the script to the onelab server, through a socket. New ONELAB variables can
then be defined using defineNumber, e.g.:

l = c.defineNumber('Geom/arm length [m]', value=1.0)

When the script is run, if the parameter Geom/arm length [m] has not been previously defined, it takes the
value (1.0) provided in defineNumber and is sent to the ONELAB server. The "/" character in the variable
name is interpreted as a path separator, and results in the creation of a sub-tree in the graphical user interface.
If the script is re-run later, the value will be updated using the value from the server (unless it is labeled as
readOnly: see below). When Gmsh runs a ONELAB client, the client can be run in two modes: check (to
check the coherence of the ONELAB database and make adjustments if necessary) and compute (to perform
the actual computation). In check mode the double pendulum client simply defines the ONELAB variables it
wants to share with the server, then exits:

if c.action == 'check' :
   exit(0)

In all other modes (i.e. when c.action=='compute), the code enters a loop and performs the actual
computation. During the computation the script can directly set a value in the ONELAB database with
setNumber, as is done in the example with:

c.setNumber('Solu/phi', value=phi)

It can also e.g. ask the server to read a file with mergeFile:

#!/usr/bin/env python
#coding=utf-8
 
# 1) launch "gmsh pend.py"
# 2) there is no 2... :-)
 
import onelab
import math, os
 
def exportMsh(le1,le2):
   mshFile = open(onelab.path(__file__, "pend.msh"),'w')
   mshFile.write('$MeshFormat\n2.2 0 8\n$EndMeshFormat\n')
   mshFile.write('$Nodes\n3\n1 0 0 0\n2 0 %s 0\n3 0 %s 0\n$EndNodes\n' %(-le1, -le1-le2))
   mshFile.write('$Elements\n3\n1 1 2 0 1 1 2\n2 1 2 0 1 2 3\n3 15 2 0 2 3\n$EndElements\n')
   mshFile.close()
 
def exportMshOpt():
   optFile = open(onelab.path(__file__, "pend.msh.opt"),'w')
   optFile.write('n = PostProcessing.NbViews - 1;\n')
   optFile.write('If(n >= 0)\nView[n].ShowScale = 0;\nView[n].VectorType = 5;\n')
   optFile.write('View[n].ExternalView = 0;\nView[n].DisplacementFactor = 1 ;\n')
   optFile.write('View[n].PointType = 1;\nView[n].PointSize = 5;\n')
   optFile.write('View[n].LineWidth = 2;\nEndIf\n')
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c.mergeFile(onelab.path(__file__, 'pend.msh'))

Common parameter attributes
Here's the list of attributes available for all ONELAB parameters:

name=string
The name of the parameter in the ONELAB database, in the form of a "/"-separated path. The name
attribute is mandatory to exchange the variable with the ONELAB server.

readOnly=0|1
If readOnly is set, the value cannot be changed server-side, and the value provided in the python script
is always used

visible=0|1
Should the parameter be visible in the interface?

help=string
Help string for this parameter

label=string
Alternative label used in the graphical user interface, replacing the part of "Name" located after the last
"/"

Other attributes can be specified using the generic attribute dictionary, e.g. attribute={'Highlight':string}.
See ONELAB Syntax for Gmsh and GetDP for a list of all other attributes.

Number attributes
In addition, numbers can take the following specific attributes:

min=number
Minimum value allowed when scrolling in the interface, and when looping on the parameter

max=number
Maximum value allowed when scrolling in the interface, and when looping on the parameter

step=number
Step value used when scrolling in the interface, and when looping on the parameter

choices={number, number, ...}
Possible choices for the parameter

labels={number:string, number:string, ...}
Possible choices for the parameter, with string labels for each choice

String attributes
Strings accept the following specific attributes:

kind=string
Mutable kind of the string (currently: "file")

choices={string, string, ...}
Possible choices for the parameter

Retrieved from "http://onelab.info/onelab_wiki/index.php?title=Python&oldid=6982"
Category: Tutorial

This page was last modified on 11 January 2014, at 09:42.
This page has been accessed 1,868 times.
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C++
From ONELAB

Any C++ solver can be become a native ONELAB client.

Getting started
1. Download and uncompress a recent version of Gmsh, or the Gmsh/GetDP bundle for Windows64

(http://onelab.info/files/gmsh-getdp-Windows64.zip) , Windows32 (http://onelab.info/files/gmsh-
getdp-Windows32.zip) , Linux64 (http://onelab.info/files/gmsh-getdp-Linux64.zip) , Linux32
(http://onelab.info/files/gmsh-getdp-Linux32.zip) or MacOSX (http://onelab.info/files/gmsh-getdp-
MacOSX.zip) .

2. Download the C++ solver pend.cpp (http://onelab.info/files/pendulum/pend.cpp) (as well as onelab.h
(http://onelab.info/files/pendulum/onelab.h) and GmshSocket.h
(http://onelab.info/files/pendulum/GmshSocket.h) ).

3. Compile pend.cpp, e.g. using g++ pend.cpp -o pend.exe (using the .exe extension will allow Gmsh to
recognize that this is an executable)

4. Double-click on the Gmsh executable (gmsh.exe  on Windows).
5. Load the C++ solver (pend.exe file) through the File/Open menu.
6. Click on Run.
7. ... that's it!

How does it work?
You need two header files in order to compile a native C++ client: onelab.h and GmshSocket.h.

The following example, which implements a simple solver for the double pendulum problem, introduces the
main features of the C++ interface. (A Python version of this solver is also available.)

// 1) compile with "g++ pend.cpp -o pend.exe"
// 2) launch "gmsh pend.exe"
 
#include <math.h>
#include <stdio.h>
#include "onelab.h"
 
void exportMsh(double le1, double le2)
{
  FILE *mshFile = fopen("pend.msh","w");
  if(!mshFile) return;
  fprintf(mshFile, "$MeshFormat\n2.2 0 8\n$EndMeshFormat\n");
  fprintf(mshFile, "$Nodes\n3\n1 0 0 0\n2 0 %f 0\n3 0 %f 0\n$EndNodes\n",
          -le1, -le1-le2);
  fprintf(mshFile, "$Elements\n3\n1 1 2 0 1 1 2\n2 1 2 0 1 2 3\n3 15 2 0 2 3\n"
          "$EndElements\n");
  fclose(mshFile);
}
 
void exportMshOpt()
{
  FILE *optFile = fopen("pend.msh.opt", "w");
  if(!optFile) return;

Direct link to file `pendulum/pend.cpp' (http://onelab.info/files/pendulum/pend.cpp)

Retrieved from "http://onelab.info/onelab_wiki/index.php?title=C%2B%2B&oldid=6870"
Category: Tutorial

This page was last modified on 9 December 2013, at 19:11.
This page has been accessed 961 times.
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E.2 Gmsh and GetDP ONELAB syntax

This section presents a snapshot of the Gmsh and GetDP syntax documentation available
on the ONELAB website. See http://onelab.info/wiki/ONELAB_Syntax_for_Gmsh_and_

GetDP for the most up-to-date information.
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ONELAB Syntax for Gmsh and GetDP
From ONELAB

ONELAB parameters can be defined directly in the input files (.geo and .pro files) through the
DefineConstant syntax:

DefineConstant[ x = {1, Name "My variable"} ];
DefineConstant[ x = {1, Name "My variable", Choices {0,1}} ];
DefineConstant[ x = {1, Name "My variable", Choices {0,3,5}} ];
DefineConstant[ x = {1, Name "My variable", Choices {0="Zero",3="Three", 5="Five"}} ];
DefineConstant[ x = {1, Name "My variable", Min 0, Max 50, Step 5} ]
DefineConstant[ x = {1, Name "Variables/Input/My variable", Min 0, Max 50, Step 5} ];

When the input file is analyzed, if the parameter has not been previously defined, it takes the value provided
in DefineConstant and is sent to the ONELAB server. The "/" character in a variable name is interpreted as
a path separator, and results in the creation of a sub-tree in the graphical user interface. If the input file is re-
analyzed later, the value will be updated using the value from the server (unless it is labeled ReadOnly: see
below). The same syntax can be used to define string parameters:

DefineConstant[ s = {"a", Name "My string variable"} ];
DefineConstant[ s = {"a", Name "My string variable", Choices {"a", "b", "c"} } ];
DefineConstant[ x = {"a", Name "My string variable", Kind "File"} ]
DefineConstant[ x = {"a", Name "Variables/Input/My variable"} ];

Note that when the code is run without the ONELAB server, the parameters simply take the default values
provided by DefineConstant. An input file modified to create an appealing graphical user interface using
ONELAB can thus also be run as-is without ONELAB.

Common parameter attributes
Here's the list of attributes available for all ONELAB parameters:

Name string
The name of the parameter in the ONELAB database, in the form of a "/"-separated path. The Name
attribute is mandatory to exchange the variable with the ONELAB server. If no name (and no other
attribute) is given, the DefineConstant construct can be used to assign default values to local
variables (which will not be sent to the ONELAB server).

ReadOnly 0|1
If ReadOnly is set, the value cannot be changed server-side, and the value provided in
DefineConstant is always used

Highlight string
Color used to draw the widget in the graphical interface

Visible 0|1
Should the parameter be visible in the interface?

Closed 0|1
Should the subtree containing this variable be closed?

Help string
Help string for this parameter

AutoCheck 0|1
Allows to disable automatic "check" (rebuild of the interface) when the value is changed

GmshOption string

Treat the parameter as the name of a Gmsh option (e.g. Mesh.Algorithm). Can also be used to force a
database reset (with ResetDatabase).

Label string
Alternative label used in the graphical user interface, replacing the part of "Name" located after the
last "/"

Number attributes
In addition, numbers can take the following specific attributes:

Min number
Minimum value allowed when scrolling in the interface, and when looping on the parameter

Max number
Maximum value allowed when scrolling in the interface, and when looping on the parameter

Step number
Step value used when scrolling in the interface, and when looping on the parameter

Range {min, max, step}
Alternate syntax for Min, Max and Step

Choices{number, number, ...}
Possible choices for the parameter

Choices{number=string, number=string, ...}
Possible choices for the parameter, with string labels for each choice

ReadOnlyRange 0|1
Treat the range (or the choices, if they are provided) as read-only

Loop string
Loop over the parameter (the string indicates the loop imbrication level: currently "1", "2" or "3")

Graph string

String attributes
String accepts the following specific attributes:

Kind string
Mutable kind of the string (currently: "file")

Choices {string, string, ...}
Possible choices for the parameter

MultipleSelection "1001111"
Allow multiple selection in choices. The following string indicates the initial selection pattern.

Macro string
Treat the parameter as the filename of a macro that will be run when the parameter is clicked in the
interface

Retrieved from "http://onelab.info/onelab_wiki/index.php?
title=ONELAB_Syntax_for_Gmsh_and_GetDP&oldid=7018"

This page was last modified on 15 February 2014, at 11:33.
This page has been accessed 1,027 times.
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E.3 Sample metamodels for GetDP

This section presents a snapshot of the documentation available for GetDP-based metamodels
available on the ONELAB website. See http://onelab.info/wiki/GetDP for the most up-
to-date information.
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GetDP
From ONELAB

GetDP (http://geuz.org/getdp) is a rather general open source finite element solver using mixed elements to
discretize de Rham-type complexes in one, two and three dimensions. GetDP is developed by the ACE
(http://ace.montefiore.ulg.ac.be) group from the Montefiore Institute (http://www.montefiore.ulg.ac.be) at the
University of Liège (http://www.ulg.ac.be) , and is released under the GNU GPL.

Contents
1 Getting started
2 GetDP models

2.1 Featured physical models
2.2 All models

3 How does it work?

Getting started
ONELAB allows to use GetDP as a black-box solver: you don't need to know anything about finite elements
or de Rham complexes in order to run your first simulations:

1. Download and uncompress the Gmsh/GetDP bundle for Windows64 (http://onelab.info/files/gmsh-
getdp-Windows64.zip) , Windows32 (http://onelab.info/files/gmsh-getdp-Windows32.zip) , Linux64
(http://onelab.info/files/gmsh-getdp-Linux64.zip) , Linux32 (http://onelab.info/files/gmsh-getdp-
Linux32.zip) or MacOSX (http://onelab.info/files/gmsh-getdp-MacOSX.zip) . (If you prefer you can
of course also download and install Gmsh (http://geuz.org/gmsh/#Download) and GetDP
(http://geuz.org/getdp/#Download) independently.)

2. Double-click on the Gmsh executable (gmsh.exe  on Windows).
3. Load one of the GetDP models (.pro file) through the File/Open menu, e.g. inductor.pro for the

simple inductor/core example.
4. Click on Run.
5. ... that's it!

Note that on Windows, depending on your computer security settings, you might have to explicitly allow the
GetDP executable to be launched by Gmsh. Manually launch GetDP once by double-clicking on getdp.exe
to allow this.

Launch Gmsh and load the GetDP model magnet.pro
with the File/Open menu.

Click on Run to launch a computation. You can change
any parameter and then Run again!

GetDP models
Featured physical models

Acoustics Electromagnetism Multi-physics

Multiple
scattering
Time reversal

Simple inductor/core
system
Rotating electric
machines
Antennas
Shielding effectiveness

Electromechanical relay
Induction heating (electro-thermal)
Magnetometer (electromechanical,
thermal)

All models
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All GetDP models

How does it work?
GetDP input files (.pro files) can be instrumented to share parameters with the ONELAB server, through the
same syntax as the one used in Gmsh.

Retrieved from "http://onelab.info/onelab_wiki/index.php?title=GetDP&oldid=7017"

This page was last modified on 7 February 2014, at 10:50.
This page has been accessed 18,731 times.
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Acoustic Scattering
From ONELAB

2D model of the scattering of a wave by multiple ellipsoidal obstacles.

 (http://onelab.info/files/acoustic_scattering/screenshot1.png) 

 (http://onelab.info/files/acoustic_scattering/screenshot2.png)

Download model archive (acoustic_scattering.zip) (http://onelab.info/files/acoustic_scattering.zip) 
Browse individual model files (http://onelab.info/files/acoustic_scattering/)

Contents
1 Additional information

1.1 Scattering problem
1.2 Weak formulation
1.3 A few words on the far field
1.4 Incident waves
1.5 Approximation with a PML
1.6 Analysis types
1.7 Results with Sommerfeld ABC

1.7.1 Single scattering
1.7.2 Multiple scattering

1.8 Results with PML
1.8.1 Single scattering
1.8.2 Multiple scattering

2 References

Additional information
To run the model, open scattering.pro with Gmsh.

Scattering problem

Let , be  bounded, disjoint and connected open subset of  such that  is

connected for . Let  be the domain occupied by the  obstacles and 

 be the connected propagation domain which is also assumed to be connected. Lastly,  denotes
the boundary  with a unit outwardly directed normal .

When the obstacles  is illuminated by a time-harmonic incident wave , it generates a scattered field ,
solution of the scattering problem, where  is the wavenumber and the time dependence is assumed to be of
the form ,

The operator  is the Laplace operator. Here, the boundary condition is a Dirichlet one (sound-soft obstacle),
however, a Neumann boundary condition can also be applied (sound-hard scatterer). The outgoing condition
stands for the Sommerfeld radiation condition

where  is the euclidian norm on .

Problem ((1)) admits a unit solution[1]. To solve it numerically using a finite element method, one must truncate
the infinit domain . Several methods exist, such as Absorbing Boundary Condition (ABC) [2], Perfectly Matched
Layer (PML)[3] [4], Boundary Integral Equation (BIE)[5],  A revue of different technics can be found here[6].
We first consider the cas of a simple ABC (Sommerfeld-like). We introduce a fictitious boundary  surrounding
all the scatterers. To simplify, we assume that  is a disk of radius  and centered on . We denote
by  the subset of  with boundary  (the intersection between the infinite domain  and the disk of
center  and radius ). On the fictitious boundary  is pluged the ABC, which is here

Note that the normal  is pointing outside  on  (and inside on ). The new problem, which approachs the
original one ((1)), then reads as

To simplify, the name  still refers to the solution of the above problem (even it approximates the "real" solution
of problem ((1))).
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Weak formulation

The following sobolev spaces of  must first be introduced

and

The weak formulation can now be expressed

In the Neumann case, that is  on , then the weak formulation reads as

Remark: the space  is not a Banach space but an Hermitian one and  and  do not belong to the same
space. Thus, the weak formulation ((4)) is not written in the usual way of finite element method. However, GetDP
takes care of the dirichlet boundary condition and thus, in practice, the user will implement equation ((4)) directly.

A few words on the far field

In the direction , when  tends to infinity, the scattered field  has the following
behavior

where  is the far field of  in the direction . To compute this with a finite element method, we propose to
use the integral representation of 

where  is the Helmholtz Green function, defined in two dimension by

which involves the zeroth order Hankel function of first kind . Then, the point  is thrown to "infinity". In
practice,  is computed on a circle with a very large radius (e.g. ). The obtained result will then be close
to the far field.

Note that, for a Dirichlet boundary condition, we need to compute the normal derivative  of  on . That is
why a Region "TrGr" is computed, composed by the elements of  that are connected to . More information can
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∂n |Γ ∫Γ

∂n |Γ

G(x, y)

∀x, y ∈ , x ≠ y, G(x, y) = (k∥x − y∥),ℝ2 i
4 H (1)

0

H (1)
0 x

u(x) 1000

u∂n u Γ
Ω Γ

be found in the Acoustic2D_impenetrable.pro file.

Incident waves

In the following program, two different kind of incident waves are considered.

The plane wave of direction  

where  is the usual inner product on . The gradient of the wave (involved for
example in a Neumann boundary condition) is given by

The wave emitted by a point source located on .

Obviously, the point  must be outside . The incident wave is then the Green function centered on  :

Its gradient is then given by

where  is the Hankel function of the first kind and first order. This is due to the fact that the derivative of the
Hankel function of order  is the opposite of the Hankel function of order 

Approximation with a PML

Instead of using an absorbing boundary condition (ABC) of order  (2), we can use a Perfectly Matched Layer
(PML) [7] [8] surrounding a domain of interest.

First, let us build the domain  on which an approximation of the scattered field will be computed. To simplify, 
 will be a rectangle

where  and  are real constant such that  for . Obviously, this set is sufficiently
large to contain all the scatterers.

Around the rectangle  is built the absorbing layer  defined by

β = (cos(β), sin(β))

(x) = ,uinc eik(β⋅x)

β ⋅ x = cos(β) + sin(β)x1 x2 ℝ2

∇ (x) = ik β = ik (x)βuinc eik(β⋅x) uinc

s = ( , )s1 s2

s Ω−⎯ ⎯⎯⎯⎯ s

(x) = (k∥x − s∥).uinc i
4 H (1)

0

∇ (x) = − (k∥x − s∥) ,uinc i
4 H (1)

1
x − s

∥x − s∥

H (1)
1

0 1

( = − .H (1)
0 )′ H (1)

1

0

Ωe
Ωe

Ωe =
=

(] , [ × ] , [) ∖  α1 β1 α2 β2 Ω−⎯ ⎯⎯⎯⎯

(] , [ × ] , [) ⋂  ,α1 β1 α2 β2 Ω+

, ,α1 b1 α2 β2 <αj βj j = 1, 2

Ωe ΩPML

= ( ] − , + [ × ] − , + [ ) ∖ ,ΩPML α1 δPML
1 β1 δPML

1 α2 δPML
2 β2 δPML

2 Ωe
⎯ ⎯⎯⎯⎯

PML PML
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where  and  are the thickness of the PML in the  et  direction, respectively. Let  be the
boundary separating  from  and , the boundary which truncated the PML.
Finally, let us introduce  the total computation domain and. In practice, the thickness 
and  are very small, e.g. : 10 elements.

The approximation  of  in  is solution of a partial differential equation in  and satisfies a boundary
condition on . The field  is dissipated through it passage in . This absorption is obtained by
modifying the Helmholtz equation. However, let us first focus on the boundary condition. If the outgoing waves
are sufficiently damped by the PML then the amplitude will be close to zero in a neighborhood of . Thus,
the role of the boundary condition will be unimportant [9]. That is why we propose to set a homogeneous Dirichlet
boundary condition on . However, an absorbing boundary condition could be used to make the result more
accurate.

Let us now focus on the absorption. As said before, this absorption is obtained by modifying the Helmholtz
equation inside . More precisely, the problem solved by  is the following

with

The functions  and  are called damping functions. When  and  are equal to zero, then equation ((5))
reduce to (classical) Helmholtz equation, that is why in general, these functions vanish on . On the other hand,
when the damping functions are positive, they act as a dissipative term in the equation. Remark that, by
introducing the following matrix

δPML
1 δPML

2 x y Σint
Ωe ΩPML = ∂ ∖ΣPML ΩPML Σint

= ⋃ΩT Ωe
⎯ ⎯⎯⎯⎯ ΩPML δPML

1
δPML

2

uPML u Ωe ΩT
ΣPML uPML ΩPML

ΣPML

ΣPML

ΩPML uPML

( ) + ( ) +∂x1

Sx2

Sx1
∂x1 uPML ∂x2

Sx1

Sx2
∂x2 uPML k 2Sx1 Sx2 uPML

uPML

=

=

f

0

( )ΩT

( )ΣPML

(5)

∀x = ( , ) ∈ ,x1 x2 ΩT
⎯ ⎯⎯⎯⎯

⎧

⎩
⎨⎪⎪

(x) = 1 − ,Sx1
( )σx1 x1
ik

(x) = 1 − .Sx2
( )σx2 x2
ik

σx1 σx2 σx1 σx2 Ωe

D = ,

⎡⎢⎢⎢

S 2 ⎤⎥⎥⎥

then problem ((5)) can be rewritten as

The choice of the damping functions  and  obviously influces the dissipative power of the PML. Here,
these functions are simply linear and, moreover, continuous on , in order to avoid any non desirated reflection.
As they vanish in , these functions stays equal to zero on  and reach their maximum on , which will
be set to . This choice is purely given by the experiment and is not a general coefficient. In fact, for another
problem, this parameter must certainly be tuned.

To summarize, the two damping functions  and  are given by:

For , function  has the following appearance, with respect to  for a fix  with 
, for  with .

Inside , the damping functions vanish whereas inside , at least one of them do not vanish. Note that in
the "corners" of , both damping function are note equal to zero.

Finally, let us just remark that the efficiency of the PML can be improved by using another type of damping
functions, as quadratic functions or even functions with an infinite integral on , as the one proposed by
Bermudez et. al [10].

The weak formulation can be derived in the same way as for the ABC. To simplify, we denote by  the
approximation of the scattered field in  (instead of ). Let us introduce the following subspaces of 

 :

D = ,

⎡

⎣

⎢⎢⎢⎢

Sx2

Sx1

0

0

Sx2

Sx1

⎤

⎦

⎥⎥⎥⎥

{ div(D∇ ) +uPML k 2Sx1 Sx2 uPML
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=
=

f
0

( )ΩT
( )ΣPML

(6)
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⎪⎪⎪

0
100 −∣∣xj βj ∣∣

δPML
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δPML

j

 if < < ,αj xj βj

 if ≤ ≤ + ,βj xj βj δPML
j

 if − ≤ ≤ .αj δPML
j xj αj

j = 1, 2 σxj xj xi
− ≤ ≤ +αi δPML

i xi βi δPML
i i, j = 1, 2 i ≠ j

Ωe ΩPML
ΩPML

ΩPML

u
Ωe uPML

( )H1 ΩT

= {ω ∈ ( ) such that ω = −  and ω = 0},inc
1

T Γ
inc

Γ PML
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and

Then, the weak formulation of problem ((6)) reads as

Analysis types

You can choose to impose Dirichlet or Neumann boundary conditions by selecting the corresponding Resolution
in the GetDP subtree. In the same subtree the Post-processing menu allows you to choose different fields to
visualize:

(1) ud: Dirichlet, compute the field  and the total field  and their absolute values
(2) ud_farfield: Dirichlet, far field of the scattered field
(3) ud_traces: Dirichlet, compute the normal derivative trace of  along 
(4) un: same as (1) for a Neumann boundary condition
(5) un_farfield: same as (2) for a Neumann boundary condition
(6) un_traces: Neumann, compute the trace of  along 
(7) uinc: compute the incident field 

When a PML layer is selected, you get the additional choices:

ud_PML: computes  and  in  in the Dirichlet case
un_PML: computes  and  in  in the Neumann case

Results with Sommerfeld ABC

Single scattering

Here is one result obtained with one circular scatterers of radius , with  and an incident angle of . The
first picture depicted the real part of the scattered field , the second one being the absolute value of . The third
figure represents the modulus of the total field  (which is the "physical" field). The last picture shows the
far field pattern of the scatterer field.

= {ω ∈ ( ) such that ω = −  and ω = 0},Vinc H1 ΩT |Γ uinc|Γ |ΣPML

= {ω ∈ ( ) such that ω = 0 and ω = 0}.V0 H1 ΩT |Γ |ΣPML

⎧

⎩
⎨⎪⎪

Find u ∈  such thatVinc

∀ ∈ , D∇u∇ dΩ − u dΩ = 0.u′ V0 ∫Ω
u′ ∫Ω

k 2Sx1 Sx2 u′

u u + uinc

u Γ

u Γ
uinc

u |u| ΩPML
u |u| ΩPML

2 k = 2 π
u u

u + uinc

   

Multiple scattering

In this example, three obstacles are placed in the domain :

 with radius 
 with radius 
 with radius 

(they are all circular even if it is not a necessarity).

As previously, the first picture shows the real part of the scattered field  and the second the absolute value of .
The third figure is a representation of the modulus of the total field  and the last one shows the far field
pattern of the scatterer field.

(−1, −2) 2
(0, 3) 0.5
(2, 0) 0.5

u u
u + uinc
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Results with PML

Single scattering

Here is one result obtained with one circular scatterers of radius , with  and an incident angle of  (  is
plane). The thickness of the PML is set to around  finite elements, which is quite high.

The first picture depicted the real part of the scattered field , the second one being the absolute value of . The
third figure represents the modulus of the total field  (which is the "physical" field). The last
picture shows the absolute value of the scattered field in the PML. This clearly show the decay of the field inside
the absorbing layer.

1 k = 2 π uinc

30
u u

= u +uT uinc

   

Multiple scattering

In this example, two ellipses are placed in the domain :

 with semi-axes  and 
 with semi-axes  and 

As previously, the first picture shows the real part of the scattered field  and the second the absolute value of .
The third figure is a representation of the modulus of the total field  and the last one shows the decay of
the scattered field in the PML.

(0, −4) 1 2
(0, 4) 1 0.5

u u
u + uinc
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Antennas
From ONELAB

2D and 3D models of antennas.

 (http://onelab.info/files/antennas/screenshot1.png) 

 (http://onelab.info/files/antennas/screenshot2.png)

Download model archive (antennas.zip) (http://onelab.info/files/antennas.zip) 
Browse individual model files (http://onelab.info/files/antennas/)

Additional information
The example contains:

dipole.pro: 2D and 3D models of a simple dipole antenna
mstrip.pro: a model of a microstrip antenna

Models developped by R. Sabariego and C. Geuzaine.
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Electric Machines
From ONELAB

2D models of electric machines: permanent magnet and wound field synchronous machines, induction
machines, switched reluctance machine.

 (http://onelab.info/files/machines/screenshot1.png) 

 (http://onelab.info/files/machines/screenshot2.png)

Download model archive (machines.zip) (http://onelab.info/files/machines.zip) 
Browse individual model files (http://onelab.info/files/machines/)

Additional information
The example contains:

pmsm.pro and pmsm_cbmag.pro: an eight-pole permanent magnet synchronous machine from
GRUCAD, Universidade Federal de Santa Catarina, Brazil (the geometry of pmsm is a simplified
version of pmsm_cbmag)[1][2][3]

lomonova.pro: an eight-pole permanent magnet machine [4]

wfsm_4p.pro: a four-pole wound field synchronous machine [5]

t30.pro: an simple induction motor with solid rotor [6][7]

im_3kw.pro: a four-pole induction machine [8][9][10]

im.pro: a four-pole deep-bar induction machine [11]

srm.pro: a switch reluctance machine [12][13]

All the examples are solved using a 2D vector potential formulation, coupled with circuit equations if
necessary. Motion is solved with the moving band technique, except for t30.pro which can also be solved
using a velocity term.
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Electromechanical Relay
From ONELAB

2D model of an electro-mechanical relay.

 (http://onelab.info/files/relay/screenshot1.png) 

 (http://onelab.info/files/relay/screenshot2.png)

Download model archive (relay.zip) (http://onelab.info/files/relay.zip) 
Browse individual model files (http://onelab.info/files/relay/)

Additional information

This is a 2D model of a linear actuator [1][2]. It comprises a yoke, two permanent magnets, two coils and a
mover. The yoke and the mover are made of iron. Eddy currents in the magnets and in the laminated yoke
and mover are neglected. The permanent magnets constitute a magnetic lock that keeps the mover either in
the upper or lower position tending to diminish the residual airgap. The mover is moved down or up by
applying a voltage pulse to one of the coils. The commutation is facilitated by two springs.

To run the example, simply open relay.pro in Gmsh.

References
1. ↑ R. V. Sabariego, J. Gyselinck, C. Geuzaine, P. Dular, W. Legros, "Application of the fast multipole

method to the 2D finite element-boundary element analysis of electromechanical devices"

(http://orbi.ulg.ac.be/handle/2268/22765) , COMPEL: The International Journal for Computation and
Mathematics in Electrical and Electronic Engineering, 22(3):659-673, 2003.

2. ↑ R. V. Sabariego, "The fast multipole method for electromagnetic field computation in numerical and
physical hybrid systems" (http://hdl.handle.net/2268/2374) , Ph.D. thesis, University of Liège, 2004.

Model developped by R. Sabariego.

Retrieved from "http://onelab.info/onelab_wiki/index.php?title=Electromechanical_Relay&oldid=6810"
Categories: GetDP Electromagnetism Mechanics

This page was last modified on 4 December 2013, at 09:16.
This page has been accessed 1,461 times.

101



Inductor
From ONELAB

2D and 3D model of an inductor/core system.

 (http://onelab.info/files/inductor/screenshot1.png) 

 (http://onelab.info/files/inductor/screenshot2.png)

Download model archive (inductor.zip) (http://onelab.info/files/inductor.zip) 
Browse individual model files (http://onelab.info/files/inductor/)

Additional information
To run the example, simply open inductor.pro in Gmsh. The example contains both 2D and 3D models,
static and dynamic, linear and nonlinear. The 2D model is very similar to the FEMM inductor example
(http://www.femm.info/wiki/InductanceExample) .

Model developped by R. Sabariego.
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Magnetodynamics with cohomology conditions
From ONELAB

Magneto-thermal model of an induction heating device.

 (http://onelab.info/files/indheat/screenshot1.png) 

 (http://onelab.info/files/indheat/screenshot2.png)

Download model archive (indheat.zip) (http://onelab.info/files/indheat.zip) 
Browse individual model files (http://onelab.info/files/indheat/)

Contents
1 Additional information

1.1 Problem definition
1.1.1 The domain
1.1.2 The boundary value problem
1.1.3  potential formulation
1.1.4  potential formulation
1.1.5 Cohomology conditions

2 References

T − Ω
A − V

Topology of the modeling domain.

Additional information
The model represents an induction heating eddy current problem that utilizes the homology and cohomology
solver of Gmsh [1]. In this example application, alternating current fed into the inductor coil generates eddy
currents in a workpiece inside the coil, causing the workpiece to heat up. To run the example, open
indheat.pro with Gmsh.

The electromagnetic modeling aspects of the problem turn out be subtle. So-called  formulation of
the problem is straightforward to implement, but it results a large linear system that might be difficult to
solve. In the  formulation of the problem, same accuracy is achieved with a smaller linear system,
but its implementation involves so-called thick-cuts, or source fields, that aren't discussed much in the finite
element curriculum and may be difficult to produce. Here, we call them cohomology basis functions, and
generate them using the cohomology solver implemented in Gmsh. The role the cohomology basis functions
are first discussed in the  formulation and then for completeness, they are also expoited in the 
formulation to take an another perspective of their role in the electromagnetic modeling.

Problem definition

The domain

Let  and let  so that 
denote the 3D modeling domain and its 2D boundary that is
decomposed in two parts. Furthermore, the domain  is decomposed in
a conducting subdomain  and a non-conducting subdomain  so
that  and  hold. We assume
that  is connected and has no holes nor voids, i.e. its Betti numbers
(http://en.wikipedia.org/wiki/Betti_number) are  = 1 and 

.

The conducting subdomain  consists of two parts: The workpiece
being heated is a hollow cylinder around which the inductor coil wraps.
The terminals of the inductor coil extend to the boundary  of the
domain.

The boundary value problem

We solve time harmonic magnetoquasistatic approximation to the Maxwell's equations in :

with constitutive equations

In order to treat the domain  as a circuit element, we apply magnetic isolation at its boundary . This is
achieved by the boundary condition

A − V

T − Ω

T − Ω A − V

M ⊂ ℝ3 ∂M = ∪S1 S2 ∂ = ∂ = ∩S1 S2 S1 S2

M
Mc Ma

M = ∪Mc Ma ∩ = ∂ ∩ ∂Mc Ma Mc Ma
M

(M)b0
(M) = (M) = 0b1 b2

Mc

∂M

M

curl h
div j

= j,
= 0,

curl e + iωb
div b

= 0,
= 0,

b = μh, e = ρj.
M ∂M

b ⋅ n = 0 on ∂M.

Ma
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Applied boundary conditions.

Curves and a surface over which
the cohomology conditions are
specified.

In the non-conducting domain  we have no currents:

and the current cannot pass from the conducting subdomain  to the
non-conducting subdomain . Also, the current cannot pass through
the boundary  to the non-conducting subdomain . Thus, the
conditions

are required to hold at the interfaces. The terminals on  which
connect the inductor coil to an external circuit are modeled as
equipotential surfaces, i.e. as perfectly conducting surfaces. Thus, we
apply a boundary condition

on them.

Note that the boundary  is now decomposed on two parts according
to the boundary condition applied on it: . On 

 we have the condition  and on 
 we have the condition . We can either drive

the problem by the net current  through the terminals, or by the net
voltage difference  between the terminals:

where  is a curve on  between the terminals on  and  is a
surface that isolates the terminals. The boundary  also lies on the part

 of the boundary of the domain. In addition, the fields  and  are linked by the constitutive equation 
. All these considerations hint a duality between the electric field  and the current density  and

between the voltage and the current conditions.

A class (http://en.wikipedia.org/wiki/Equivalence_class)  of curves on  between the terminals on 
belong to so-called relative homology (http://en.wikipedia.org/wiki/Simplicial_homology) space 

, while the class  of curves belong to a homology space . The integral conditions
on fields  and  (or ) fixing  and  are called cohomology
(http://en.wikipedia.org/wiki/De_Rham_cohomology) conditions, since they consider integrals over an
element of a homology space.

 potential formulation

In this formulation we solve for the magnetic field  in  to obtain the current density  in .
Let us denote by  the set of nodes in the mesh of  and by  the set of
edges in  that are not on the interface  of conducting and non-conducting subdomains.
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Edges that have non-zero
coefficient in a cohomology basis
function  whose
coefficient  specifies the current
in the inductor.

Edges that have non-zero
coefficient in a cohomology basis
function  whose
coefficient  specifies the current
in the workpiece.

Denote by  nodal shape functions associated with the nodes of the mesh and by  edge elements
associated with the edges of the mesh. By  we denote so-called 1-cohomology basis function, which is an
integer combination of edge elements on :

where the integer coefficient vector  is produced by the cohomology solver of Gmsh.

Now, the unknown magnetic field  is of the form

where the cohomology basis functions  and  are produced by the
computation of the cohomology space  in Gmsh. That is, the
function space from which we look for the approximate solution of  is
spanned by nodal shape functions  of , edge elements  of 

, and by the cohomology basis functions  of
the cohomology space . Those functions shall also serve as the
test functions in the following weak formulation.

The weak formulation is
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Edges that have non-zero
coefficient in a cohomology basis
function 
whose coefficient  specifies the
voltage across the inductor.

By plugging in the expression for  one can construct a linear system from which the unknown coefficients 
,  and  or  can be solved. Note that either  or  from both pairs  and  must be

fixed in order to get a unique solution.

 potential formulation

In this formulation we solve for the vector potential  of the magnetic flux density  in  and for the curl-
free part  of the electric field  in  to obtain the current density  in .

The unknown magnetic vector potential  is of the form

That is, the function space from which we look for the approximate solution of  is spanned by edge
elements  of . Those functions shall also serve as the test functions in the following weak
formulation.

The unknown curl-free part  of the electric field is of the form

Where the cohomology basis functions  and  are produced by the
computation of the relative cohomology space  in Gmsh.
That is, the function space from which we look for the approximate
solution of  is spanned by nodal shape functions  of , and
by the cohomology basis functions  of the cohomology space 

. Those functions shall also serve as the test functions in
the following weak formulation.

The weak formulation is

where
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Edges that have non-zero
coefficient in a cohomology basis
function 
whose coefficient  specifies the
voltage across the workpiece.

By plugging in the expressions for  and  one can construct a linear
system from which the unknown coefficients , , and  or  can
be solved. Note that either  or  from both pairs  and 

 must be fixed in order to get a unique solution.

Cohomology conditions

In both formulations, if the cohomology basis function  corresponds
to the net current  or the net voltage  in the inductor coil, 
and  hold. If cohomology basis function  corresponds to the
net current or voltage in the workpiece, one should set . That is,
one drives the problem by setting either the source current  or the
source voltage , and the other quantity together with the net current 

 in the workpiece are solved as part of the finite element solution.

The implementation below produces such cohomology basis functions 
 and  as described above.

References
1. ↑ M. Pellikka, S. Suuriniemi, L. Kettunen and C. Geuzaine, Homology and cohomology computation

in finite element modeling (http://geuz.org/gmsh/doc/preprints/gmsh_homology_preprint.pdf) . SIAM
Journal on Scientific Computing 35(5), pp. 1195-1214, 2013.

Model developped by M. Pellikka, S. Suuriniemi, L. Kettunen and C. Geuzaine.
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Magnetometer
From ONELAB

Xylophone bar magnetometer.

 (http://onelab.info/files/magnetometer/screenshot1.png) 

 (http://onelab.info/files/magnetometer/screenshot2.png)

Download model archive (magnetometer.zip) (http://onelab.info/files/magnetometer.zip) 
Browse individual model files (http://onelab.info/files/magnetometer/)

Additional information
To run the example, open magnetometer.pro with Gmsh. Different analyses can be performed:
Eigenmodes, Electrokinetics, Electro-mechanical (static), Electro-mechanical (dynamic) and Electro-
thermal.

Model developped by V. Rochus, I. Niyonzima, C. Geuzaine.

Retrieved from "http://onelab.info/onelab_wiki/index.php?title=Magnetometer&oldid=6856"
Categories: GetDP Electromagnetism Mechanics Thermics

This page was last modified on 7 December 2013, at 12:24.
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Shielding effectiveness
From ONELAB

2D and 3D models of cavities for electromagnetic shielding.

 (http://onelab.info/files/shielding/screenshot1.png) 

 (http://onelab.info/files/shielding/screenshot2.png)

Download model archive (shielding.zip) (http://onelab.info/files/shielding.zip) 
Browse individual model files (http://onelab.info/files/shielding/)

Additional information
[1][2][3]

References
1. ↑ M. Boubekeur, A. Kameni, L. Pichon, A. Modave and C. Geuzaine, Analysis of transient scattering

problems using a discontinuous Galerkin method: application to the shielding effectiveness of enclosures
with heterogeneous walls (http://onlinelibrary.wiley.com/doi/10.1002/jnm.1968/abstract) . International
Journal of Numerical Modelling: Electronic Networks, Devices and Fields (in press)

2. ↑ J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter and D. W. P. Thomas, Analytical Formulation for
the Shielding Effectiveness of Enclosures with Apertures (http://ieeexplore.ieee.org/xpl/login.jsp?
tp=&arnumber=709422&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel4%2F15%2F15395%2F00709422)
. IEEE Transactions on Electromagnetic Compatibility, 40(3), pp. 240-248, 1998.

3. ↑ X. Ojeda and L. Pichon, Combining the Finite Element Method and a Padé Approximation for Scattering
Analysis Application to Radiated Electromagnetic Compatibility Problems
(http://www.tandfonline.com/doi/abs/10.1163/156939305775525918) . Journal of Electromagnetic Waves
and Applications, 19(40), pp. 1375-1390, 2005.

Model developped by A. Modave.

Retrieved from "http://onelab.info/onelab_wiki/index.php?title=Shielding_effectiveness&oldid=6958"
Categories: GetDP Electromagnetism

This page was last modified on 6 January 2014, at 10:47.
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Time reversal
From ONELAB

2D model of time reversal in free space.

 (http://onelab.info/files/time_reversal/screenshot1.png) 

 (http://onelab.info/files/time_reversal/screenshot2.png)

Download model archive (time_reversal.zip) (http://onelab.info/files/time_reversal.zip) 
Browse individual model files (http://onelab.info/files/time_reversal/)

Contents
1 Additional information

1.1 Time reversal mirrors
1.2 Experiment
1.3 Mathematical problem (monochromatic wave)

1.3.1 Modelling
1.3.2 Theoretical results

1.4 Mathematical problem (Band of frequencies)
1.4.1 Emitted wave
1.4.2 Back propagated wave  by the TRM

1.5 Approximation with a PML
1.6 Weak formulation
1.7 Results

1.7.1 Monochromatic wave
2 References

Additional information
To run the time reversal model, open TR.pro with Gmsh.

Uback

Time reversal mirrors

Principle of time reversal is to use the reversibility of the waves equation in a non dissipative medium to back-propagate a
signal on the source that first emitted it[1]. Time Reversal Mirrors (TRM), designed by Matthias Fink and his team in the
90's, are composed by a large number of transducers which can play alternatively the role of emitters and receivers.
Associated to a numerical treatment module, they are able to record a signal, time reverses it, and back propagates it into
the medium.

Experiment

Consider a point source  and a rectangular time reversal mirror  placed at finite distance of the source. The experiment
can be split into three step

First, the source emits a wave that propagates throughout the medium
Second, The TRM receives and records the wave
Finally, it back-propagates it into the medium. The back-propagated field should then focuses on the point source.

The context of the experiment is the following:

The time reversal mirror is non intrusive (does not reflect waves), continuous and thick. This last condition is to
avoid any crack in the mesh.
Waves are assumed to be time harmonic of pulsation  : , where  and  is the speed
of sound in the vacuum.

This last condition implies that the time reverse operation is nothing but a phase conjugation.

Mathematical problem (monochromatic wave)

Modelling

Let the three step, emission, reception/time reverse, back propagation, be mathematically modelled as follows:

Emission: let  be the wave emitted by the point source . Thus,  is the solution of

Operator  is the Laplacian operator,  is the Dirac distribution centered on  and the first equation is
known as the Helmholtz equation. The outgoing condition stands for the Sommerfeld radiation condition at infinity

The unique solution of problem ((1)) is nothing but the Green function  centered on :

where  is the zeroth order Hankel function of the first kind. Hence, an analytic expression of the emitted wave  is
known, as

The TRM  then receives the emitted field ( ) and time-reversed it. As highlighted above, this operation is
equivalent to a phase conjugation: .
Finally, the mirror back-propagates the signal. This last step is modelled as new wave , solution of the
following problem

s 
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Hence, an analytic expression of  is also well known and given as a convolution product between Green functions:

This function can be plot directly with, \textit{e.g} a Python script, Matlab, Scilab, etc. However, it will be computed with
GMSH/GetDP by solving problem ((2)).

Theoretical results

Propositions 3.8 and A.7 (appendix) of [2], shows the focusing property of the back propagated field for a thin and a thick
TRM in 2 dimensions. As only a thick TRM is considered here, then only this result is summaries in this page. First, let be
introduced the cone  of apex  and basis the mirror (see figure on right). Then, when the wavenumber  tends to infinity,
the back-propagate field  focuses on the point source  in the sens that

if , then ,
if , then ,
if , then .

Mathematical problem (Band of frequencies)

This example is also the opportunity to show results using a band of frequencies. In that case, ,
with, e.g.  and .

Emitted wave

The emitted wave  is then obtained by integrating over all the frequencies:

where

Hence, the wave  reads as

This expression can be rewritten as

Thanks to a change of variable , the integration on  becomes
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Now, the integration with respect to  is easy to compute and gives rise to

where  is the cardinal sine. As a consequence, plugging this expression into the one of  ((3)) leads
to

Remark first that, due to the quantity , the wave  is propagating in a radial direction with respect to .
The modulus of  especially depends on the cardinal sine term, as:

In particular, for a point  close to , the modulus of  is reached at , when the value of the cardinal sine is 
. This shows the presence of an impulsion at time  at the source point. On the other hand, on a point  located at a

distance  from the source point, the modulus of  is given by

This quantity reaches its maximal value when . In other words, the perturbation created at time  reaches
the distance  and thus the MRT, at time .

Back propagated wave  by the TRM

Recall that the expression of the back propagated field  of frequency , in the time harmonic regime, is given
by,

which, in dimension , reads as

Plugging this equality into the expression of the field  leads to

The two integrals lie on a bounded domain and can be permuted. This gives rise to, for all  and ,
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The integral on variable  has already been calculated when studying the emitted wave . Thus, a direct computation
leads to, for every  of  and every  of ,

It should be pointed out that on the point , the cardinal sine term vanishes and the above expression reduces to

Hence, when , the modulus of  reaches its maximal value at time . On the other hand and on a
point , when  the equality ((4)) becomes

On , the quantity  does not depend on  anymore and reads as

For every other point  (up to symetric points of  with respect to the TRM), the stationary phase theorem can be applied,
as in the the time harmonic regime. Hence, a decrease of  with respect to  can be proven. This
decrease is moreover stronger du to the presence of the cardinal sine term. As a consequence, at time , the wave 

 focuses on the point source .

Finally, remark that at , the general expression of , becomes

In other words, the wave  on  and at time  is obtained by the sum of every time-harmonic fields ,
for . The quantity  can then be seen as an average over the frequencies  of the
different fields .

Approximation with a PML

To be solved using finite element method, problem ((2)) is truncated using a Perfectly Matched Layer (PML), as in the
scattering problem with a PML. First, let us build the domain  on which an approximation of the back propagated field
will be computed. A rectangular shape for  is natural in that problem:

where  and  are real constant such that  for . Obviously, this set is sufficiently large to
contain the source and the time reversal mirror.
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Around the rectangle  is built the absorbing layer  defined by

where  and  are the thickness of the PML in the  et  direction, respectively. Let  be the boundary
separating  from  and , the boundary which truncated the PML. Finally, let us introduce

 the total computation domain and. In practice, the thickness  and  are very small, e.g. :
10 elements.

The approximation  of  in  is solution of a partial differential equation in  and satisfies a boundary
condition on . The field  is dissipated through it passage in . This absorption is obtained by modifying
the Helmholtz equation. However, let us first focus on the boundary condition. If the outgoing waves are sufficiently
damped by the PML then the amplitude will be close to zero in a neighborhood of . Thus, the role of the boundary
condition will be unimportant [3]. That is why is proposed to set a homogeneous Dirichlet boundary condition on .
However, an absorbing boundary condition could be employed to slightly enhance the accuracy of the result.

Let us now focus on the absorption. As said previously, this absorption is obtained by modifying the Helmholtz equation
inside . More precisely, the problem solved by  is the following

with

The functions  and  are called damping functions. When  and  are equal to zero, then equation ((5)) reduce to
(classical) Helmholtz equation, that is why in general, these functions vanish on . On the other hand, when the damping
functions are positive, they act as a dissipative term in the equation. Remark that, by introducing the following matrix
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back ∂x2

Sx1

Sx2
∂x2 uPML

back k 2Sx1 Sx2 uPML
back

uPML
back

=

=
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( )ΩT
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∀x = ( , ) ∈ , {x1 x2 ΩT
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then problem ((5)) can be rewritten as

The choice of the damping functions  and  obviously influces the dissipative power of the PML. Here, these
functions are simply linear and, moreover, continuous on , in order to avoid any non desirated reflection. As they
vanish in , these functions stays equal to zero on  and reach their maximum on , which will be set to .
This choice is purely given by the experiment and is not a general coefficient. In fact, for another problem, this parameter
must certainly be tuned.

To summarize, the two damping functions  and  are given by:

For , function  has the following appearance, with respect to  for a fix  with 
, for  with .

Inside , the damping functions vanish whereas inside , at least one of them do not vanish. Note that in the
"corners" of , both damping function are note equal to zero.

Finally, let us just remark that the efficiency of the PML can be improved by using another type of damping functions, as
quadratic functions or even functions with an infinite integral on , as the one proposed by Bermudez et. al [4].

Weak formulation

To simplify, the approximation of the back propagated field in  is still denoted by  instead of . Function 
 will be sough in the Sobolev space and the weak formulation of problem ((2)) reads as

D = ,

⎡

⎣

⎢⎢⎢⎢

Sx2

Sx1

0

0

Sx2

Sx1

⎤

⎦

⎥⎥⎥⎥

{ div(D∇ ) +uPML
back Sx1 Sx2 uPML

back
uPML

back

=
=

f
0

( )ΩT

( )ΣPML
(6)

σx1 σx2 ΩT
Ωe Σint ΣPML 100

σx1 σx2

∀j = 1, 2, ∀x = ( , ) ∈ , (x) =x1 x2 ΩT
⎯ ⎯⎯⎯⎯ σxj

⎧

⎩

⎨
⎪⎪⎪
⎪⎪⎪

0
100 −∣∣xj βj ∣∣

δPML
j

100 −∣∣xj αj ∣∣
δPML

j

 if < < ,αj xj βj

 if ≤ ≤ + ,βj xj βj δPML
j

 if − ≤ ≤ .αj δPML
j xj αj

j = 1, 2 σxj xj xi
− ≤ ≤ +αi δPML

i xi βi δPML
i i, j = 1, 2 i ≠ j

Ωe ΩPML
ΩPML

ΩPML

Ωe uback uPML
back

uback ( )H1 ΩT

⎧

⎩
⎨⎪⎪

Find u ∈ ( ) such that1
T

where  is here equal to the Green function: . Next section explains how to implement this weak
formulation in GetDP.

Results

Monochromatic wave

The three following pictures depicted respectively the geometry, the real part of  and the absolute value of ,
with the above parameters ( :

Distance between source and mirror: 
Aperture of the TRM: 
Thickness of the TRM: 
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E.4 Sample metamodels for Elmer

This section presents a snapshot of the documentation available for Elmer-based metamodels
available on the ONELAB website. See http://onelab.info/wiki/Elmer for the most up-
to-date information.
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Elmer
From ONELAB

Introduction
Elmer (http://www.csc.fi/english/pages/elmer) is an open source (GPL) computational tool for multi-physics
problems. It is developed by CSC in collaboration with Finnish universities, research laboratories and
industry. To test ONELAB models working with Elmer, you shall need a working installation of the code.
The easiest way to do so, is to install first the generic ONELAB virtual machine on your system by
following these instructions. When done, log in into the virtual machine (username: "olvm", passwd: olvm)
and proceed with the installation of Elmer, and the download of benchmark ONELAB models. Instructions
to do so are given in the next section.

Installation
The Virtual machine is configured so that Gmsh and Elmer can be installed straightforwardly by issuing
simple commands in a terminal. Proceed as follows.

Step 1 - Download installation scripts
Open a terminal by clicking on the "terminal" icon in the launcher panel and issue the command
install_scripts.sh

Step 2 - Install Gmsh and Onelab
Then the command
install_gmsh.sh
downloads the nightly-build of Gmsh from http://geuz.org/gmsh, install it, and place a Gmsh icon on
the Desktop.

Step 3 - Install Elmer
The command
install_elmer.sh
downloads the source code of Elmer and compile it on the virtual machine. This may take several
minutes.

After these 3 steps, you have a woking installation of Gmsh and Elmer on the virtual machine.

Step 4 - Download model examples
The model examples detailed in the next section are downloaded in a directory named ELMERMODELS
with the command
getElmerModels.sh.

ONELAB models
Cryotherapy : Thermal analysis of the cryogenic treatment of warts

Beam3D : Didactical model of a 3D cantilever elastic beam

Laser : Thermal analysis of laser skin stimulation

Drug patch : Analysis of drug diffusion from a patch into the skin

Retrieved from "http://onelab.info/onelab_wiki/index.php?title=Elmer&oldid=7340"
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ONELAB virtual machine
From ONELAB

Contents
1 Introduction
2 Install the virtual machine
3 Share a folder with the virtual machine
4 Troubleshooting

Introduction
ONELAB is a software tool to make multi-code scientific simulations. To see how it works, a number of
open-source simulation software should be made available on your computer. As a one-size-fits-all solution
for all interfaced clients, a virtual machine has been designed to be independent of the specifies of your
system, and to have models and solvers installed with minimum user interaction. The ONELAB virtual
machine is installed by following the steps described below.

Install the virtual machine
Step 1 - Install VirtualBox on your computer

Install VirtualBox on your system from the Oracle VirtualBox website
(https://www.virtualbox.org/wiki/Downloads). Download the binary package suitable for your
operating system and the latest VirtualBox Extension Pack (There are 2 files to download), and follow
the installation instructions.

Step 2 - Configure Network connection between host and virtual machine
Launch VirtualBox. From the VirtualBox menu (under Windows: VirtualBox > File > Settings >
Network ; under OSX VirtualBox > Preferences > Network), check that a "Host only Network" called
"vboxnet0" is present. If not, add it by clicking on the "+" icon.

Step 3 - Download the ONELAB virtual machine package
by following the link: ONELAB virtual machine OVA package
(http://sites.uclouvain.be/immc/mema/fr.henrotte/olvm_ub12.ova)

Step 4 - Import the OVA package in VirtualBox
From the VirtualBox Menu "File", import the downloaded OVA package. A new virtual machine entry
entry appears in the left panel.

Step 5 - Start the ONELAB virtual machine
Start the virtual machine by double-clicking its entry in the left panel. Enter "olvm" for login and
"olvm" again for password (without quotes). You are ready to continue with ONELAB models.

Back to Elmer models

Share a folder with the virtual machine
The virtual machine is a second computer running on your system. They share screen, mouse and keyboard.
It is also convenient to have them share a folder. This allows easy communication of files and data between
the host to the virtual machine.

To share a folder, you first need, if need be, to shut down the virtual machine, and create the folder to be
shared on the host. Then, enter the settings panel of the virtual machine and select the "Shared folders" tab.
Click on the "+" icon and browse to the shared folder on the host system. As the "Folder name", write
"OLVM" (without quote), and check the "auto mount" box. The shared folder is mounted on
/media/sf_OLVM but, with the special name "OLVM", a link to the shared folder will be available directly
as "SHARED" on the desktop of the virtual machine.

Troubleshooting
On older versions of Windows, you might have to explicitly enable virtualization in the bios.

There is a well-known conflict (generating an error message when saving a file) between gedit and
folders shared with a Windows host. As a workaround, backup files should be enabled in gedit
settings, disregard error message and always save twice (More information on that:
https://bugs.launchpad.net/ubuntu/+source/gedit/+bug/34813?comments=all).

VirtualBox does not yet fully support the MacBook Pro Retina screen. If you experience display
problems, try launching VirtualBox in low resolution. Right click on the VirtualBox icon in the
Application folder, select "Properties" and tick the "Open in low resolution" box.

Retrieved from "http://onelab.info/onelab_wiki/index.php?title=ONELAB_virtual_machine&oldid=7352"
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Cryotherapy
From ONELAB

2D tool for cryotherapy.

(http://onelab.info/files/cryotherapy/screenshot1.png)

(http://onelab.info/files/cryotherapy/screenshot2.png)

Download model archive (cryotherapy.zip) (http://onelab.info/files/cryotherapy.zip)
Browse individual model files (http://onelab.info/files/cryotherapy/)

Additional information
The physical background is the cryogenic treatment of warts by application of a cryogenic fluid. The idea is
to maximize the destruction of wart tissue cells while minimizing damages to healthy skin tissue. A damage
function depending on temperature distribution and exposure time is built to represent this trade-off. The
purpose of the modeling is to determine the application time that minimizes the damage function.
Geometrical and modeling parameters can be interactively modified in the ONELAB window. By clicking

on the "Run" button, the thermal solver of Elmer is invoked. After execution, a plot of the damage function
vs. time is displayed, and the computed optimum application time tmin is highlighted in the ONELAB
window.

Cd to the models' directory in a terminal and issue gmsh cryo.py at the prompt, or open cryo.py from the
"File" menu of Gmsh.

Model developed by F. Henrotte.

Retrieved from "http://onelab.info/onelab_wiki/index.php?title=Cryotherapy&oldid=7308"
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Beam3D
From ONELAB

3D model of a beam

(http://onelab.info/files/beam3d/screenshot1.png)

(http://onelab.info/files/beam3d/screenshot2.png)

Download model archive (beam3d.zip) (http://onelab.info/files/beam3d.zip)
Browse individual model files (http://onelab.info/files/beam3d/)

Additional information
This model is the didactical analysis of a clamped beam (static 3D elasticity). The dimensions of the beam
and the material parameter can be modified interactively in the ONELAB window, as well as a number of
modeling parameters. Diagrams of the internal moments can be generated by checking the box Compute MT
diagrams.

Cd to the models' directory in a terminal and issue gmsh beam.py at the prompt, or open beam.py from the
"File" menu of Gmsh.

Model developed by F. Henrotte.
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Laser
From ONELAB

2D tool for cryotherapy.

(http://onelab.info/files/laser/screenshot1.png)

(http://onelab.info/files/laser/screenshot2.png)

Download model archive (laser.zip) (http://onelab.info/files/laser.zip)
Browse individual model files (http://onelab.info/files/laser/)

Additional information
The physical background of this model is the laser stimulation of skin in order to measure the density of
nociceptive (http://en.wikipedia.org/wiki/Nociceptionreceptors) receptors. For a correct interpretation of the
experimental data, an accurate knowledge of the temperature distribution in time and across the skin is

needed. The metamodel allows selecting various laser types (Gaussian, flat-top) and various stimulus
characteristics (imposed flux or controlled temperature). Each simulation generates a graphical result file
plot.pdf that is directly interpretable by clinicians.

Cd to the models' directory in a terminal and issue gmsh laser.py at the prompt, or open laser.py from the
"File" menu of Gmsh.

Model developed by F. Henrotte.
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Patch
From ONELAB

(http://onelab.info/files/patch/screenshot1.png)

(http://onelab.info/files/patch/screenshot2.png)

Download model archive (patch.zip) (http://onelab.info/files/patch.zip)
Browse individual model files (http://onelab.info/files/patch/)

Additional information
This metamodel is a toolkit for drug patch conception. The user can determine the geometry of the patch and
initial drug concentrations. A number of drugs are pre-tabulated with their diffusivities. Elmer solves a
convection-diffusion equation and postprocessing tools display the time evolution of drug concentration
across the epidermis and the dermis and generates a graphical report with the rate at which drug is
transmitted to the skin.

Cd to the models' directory in a terminal and issue gmsh patch.py at the prompt, or open patch.py from the
"File" menu of Gmsh.

Model developed by F. Henrotte.
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E.5 Sample metamodels for OpenFOAM

This section presents a snapshot of the documentation available for OpenFOAM-based meta-
models available on the ONELAB website. See http://onelab.info/wiki/OpenFOAM for the
most up-to-date information.
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OpenFOAM
From ONELAB

Introduction
OpenFOAM (http://www.openfoam.com) is a free, open source CFD software package developed by
OpenCFD Ltd at ESI Group and distributed by the OpenFOAM Foundation. To test ONELAB models
working with OpenFOAM, a working installation of OpenFOAM on your system is needed. The easiest way
to do so, is to install first the generic ONELAB virtual machine by following these instructions. When done,
log in into the virtual machine (username: "olvm", passwd: olvm) and proceed with the Instructions of the
next section.

Installation
The Virtual machine is configured so that Gmsh and OpenFOAM can be installed straightforwardly. You
have to be online. Proceed as follows.

Step 1 - Download installation scripts
Open a terminal by clicking on the "terminal" icon in the launcher panel and issue the command
install_scripts.sh

Step 2 - Install Gmsh and Onelab
Then the command
install_gmsh.sh
downloads the nightly-build of Gmsh from http://geuz.org/gmsh, install it, and place a Gmsh icon on
the Desktop.

Step 3 - Install OpenFOAM
The command
install_foam.sh
installs OpenFOAM 2.30 from http://www.openfoam.org. Simply answer "Y" or "y" when asked to.

After these 3 steps, you have a woking installation of Gmsh and OPenFOAM on the virtual machine.

Step 4 - Download model examples
The model examples detailed in the next section are downloaded in a directory named FOAMMODELS
with the command
getFoamModels.sh.

ONELAB models
Valve : CFD analysis of a valve
Tutorial : a didactic tutorial for CFD students

Retrieved from "http://onelab.info/onelab_wiki/index.php?title=OpenFOAM&oldid=7374"
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Valve
From ONELAB

CFD model of a valve

(http://onelab.info/files/valve/screenshot1.png)

(http://onelab.info/files/valve/screenshot2.png)

Download model archive (valve.zip) (http://onelab.info/files/valve.zip)
Browse individual model files (http://onelab.info/files/valve/)

Additional information
This model is the didactic CFD model of a valve. After setting the clearance of the valve, the mass flow and
the fluid's viscosity, click on "Run". The incompressible solver "simpleFoam" of OpenFOAM is then called
to compute the steady state flow in the system.

Cd to the models' directory in a terminal and issue gmsh valve.py at the prompt, or open valve.py from the
"File" menu of Gmsh.

Model developed by F. Henrotte and L. Fitschy (GDTech).
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TutorialCFD
From ONELAB

Didactical tutorial for CFD students

(http://onelab.info/files/tutorial/screenshot1.png)

(http://onelab.info/files/tutorial/screenshot2.png)

Download model archive (tutorial.zip) (http://onelab.info/files/tutorial.zip)
Browse individual model files (http://onelab.info/files/tutorial/)

Additional information
This model is the didactic tutorial for CFD students. Two exercices are proposed. In the first one, student can
check on the validity of various boundary condition combinations. In the second one, the impact of mesh
refinement on drag and lift coefficient can be studied.

Cd to the models' directory in a terminal and issue gmsh main.py at the prompt, or open main.py from the
"File" menu of Gmsh.

Model developed by F. Henrotte and A. Guissart (ULg).
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E.6 ONELAB for tablets and mobile phones

This section presents how ONELAB can be used on mobile platforms (Android and iOS tablets
and phones). See http://onelab.info/wiki/Mobile for the most up-to-date information.
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Mobile
From ONELAB

Contents
1 User's guide

1.1 Running a pre-packaged model
1.2 Installing new models on iOS
1.3 Installing new models on Android

2 Installing unpublished/beta versions of Onelab/Mobile
2.1 iOS
2.2 Android

3 Compiling Onelab/Mobile
3.1 iOS
3.2 Android

User's guide
Onelab/Mobile is available for iOS 7 (iPhone and iPad) and Android 4:

Download Onelab/Mobile for iPhone and iPad on the App Store (https://itunes.apple.com/us/app/onelab/id845930897)
Download Onelab/Mobile for Android devices on Google Play (https://play.google.com/store/apps/details?id=org.geuz.onelab)

Onelab/Mobile currently contains Gmsh and GetDP and runs all computations locally on your mobile device. Future versions will add support for remote calculations in the
cloud.

Please report bugs and suggestions for Onelab/Mobile to mobile @ onelab . info.

Running a pre-packaged model
A list of available models appears when you launch Onelab/Mobile. Selecting a model will load it. You can then select Run to launch a simulation with the default set of
parameters. To change parameters, select Parameters.

List of models on iPhone;
select a model to open it.

 

Press Run to launch a
computation with the
default set of parameters.

 

Press Parameters to
modify the parameters.

Installing new models on iOS
In order to install a new model on iOS, you need to bundle it inside a directory with extension .bundle. The directory should contain a file named infos.xml with the model
information (see e.g. the Inductor (http://onelab.info/files/inductor) example). You can then use file sharing (http://support.apple.com/kb/HT4094) in iTunes to install the
model on your device.

Installing new models on Android
On Android, you can simply open .geo or .pro files from a file explorer (https://play.google.com/store/search?q=file%20explorer&c=apps) .

Installing unpublished/beta versions of Onelab/Mobile
Follow the instructions below if you want to install a version of Onelab/Mobile that is not published officially on the App Store (for iOS) or the Google Play store (for
Android).

iOS
1. Download the latest Onelab.ipa (http://geuz.org/gmsh/beta/Onelab.ipa)
2. Send us your device ID

(https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html##//apple_ref/doc/uid/TP40012582-
CH30-SW46) by email at mobile @ onelab . info ; we will add your device to the list of the devices allowed for Onelab/Mobile beta development.

3. Install the Onelab/Mobile application through iTunes

(https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html#//apple_ref/doc/uid/TP40012582-
CH8-SW6) by double-cliking on Onelab.ipa.

Android
1. Allow the installation of non-Market apps (https://developer.android.com/tools/publishing/publishing_overview.html#unknown-sources) on your Android device (>

Settings > Security > Unknown sources)
2. Install the application:

either download Onelab.apk, upload it on your SD card and use a file explorer (https://play.google.com/store/search?q=file%20explorer&c=apps) to open it
or use the Android SDK tool adb and install the file:
adb install Onelab.apk
or use your web browser and directly download Onelab.apk on your device and install it

Compiling Onelab/Mobile
iOS
You will need a Mac with Xcode >= 4 and the iOS SDK >= 7.0. The app depends on several external frameworks (Gmsh, GetDP, PETSc, BLAS, LAPACK) ; scripts in the
Gmsh SVN repository show the steps required to build these frameworks and the app for the simulator
(https://geuz.org/trac/gmsh/browser/trunk/contrib/mobile/utils/onelab_iossimulator_build.sh) and the actual device
(https://geuz.org/trac/gmsh/browser/trunk/contrib/mobile/utils/onelab_ios_build.sh) (login=gmsh, passwd=gmsh).

Android
You will need the Android SDK with level >= 14 and the Android NDK. The app depends on several external frameworks (Gmsh, GetDP, PETSc, BLAS, LAPACK) ; a script
in the Gmsh SVN repository shows the steps requiered to build these frameworks and the app
(https://geuz.org/trac/gmsh/browser/trunk/contrib/mobile/utils/onelab_android.sh) (login=gmsh, passwd=gmsh).
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