Difference between revisions of "Tutorial/Laplace equation with Neumann boundary condition"

From ONELAB
Jump to: navigation, search
Line 2: Line 2:
 
\begin{equation}
 
\begin{equation}
 
\begin{cases}
 
\begin{cases}
\Delta u + u = f & \text{in } \Omega)\\
+
\Delta u + u = f & \text{in } \Omega\\
 
\displaystyle{\frac{\partial u}{\partial \mathbf{n}} = 0} & \text{on }\partial\Omega
 
\displaystyle{\frac{\partial u}{\partial \mathbf{n}} = 0} & \text{on }\partial\Omega
 
\end{cases}
 
\end{cases}
 
\end{equation}
 
\end{equation}

Revision as of 09:53, 1 September 2011

We propose here to solve a first very simple academic example with GMSH and GetDP. The problem is the following: \begin{equation} \begin{cases} \Delta u + u = f & \text{in } \Omega\\ \displaystyle{\frac{\partial u}{\partial \mathbf{n}} = 0} & \text{on }\partial\Omega \end{cases} \end{equation}