Difference between revisions of "Tutorial/Laplace equation with Neumann boundary condition"
From ONELAB
Line 2: | Line 2: | ||
\begin{equation} | \begin{equation} | ||
\begin{cases} | \begin{cases} | ||
− | \Delta u + u = f & \text{in } \Omega | + | \Delta u + u = f & \text{in } \Omega\\ |
\displaystyle{\frac{\partial u}{\partial \mathbf{n}} = 0} & \text{on }\partial\Omega | \displaystyle{\frac{\partial u}{\partial \mathbf{n}} = 0} & \text{on }\partial\Omega | ||
\end{cases} | \end{cases} | ||
\end{equation} | \end{equation} |
Revision as of 09:53, 1 September 2011
We propose here to solve a first very simple academic example with GMSH and GetDP. The problem is the following: \begin{equation} \begin{cases} \Delta u + u = f & \text{in } \Omega\\ \displaystyle{\frac{\partial u}{\partial \mathbf{n}} = 0} & \text{on }\partial\Omega \end{cases} \end{equation}