Difference between revisions of "Waveguides"
(→Some results) |
|||
(9 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{ | + | {{metamodelGetDP|waveguides}} |
{{mytexdefs}} | {{mytexdefs}} | ||
− | == | + | == Additional information == |
− | + | To run the model, open '''main.pro''' or a file '''.pro''' with Gmsh. | |
== Description of the model == | == Description of the model == | ||
− | + | === Classical waveguides === | |
− | + | ==== General case ==== | |
− | + | ||
− | + | Let us consider a hollow cylindrical waveguide of arbitrary cross-sectional shape that has a principal axis in the $z$-direction. | |
− | |||
The elementary solution of this problem reads | The elementary solution of this problem reads | ||
\begin{align} | \begin{align} | ||
Line 88: | Line 87: | ||
* If $\omega>\omega_\ell$, $k_\ell$ is real and the waves are travelling modes. | * If $\omega>\omega_\ell$, $k_\ell$ is real and the waves are travelling modes. | ||
* If $\omega<\omega_\ell$, $k_\ell$ is imaginary and the waves are evanescent modes. | * If $\omega<\omega_\ell$, $k_\ell$ is imaginary and the waves are evanescent modes. | ||
− | |||
− | + | ==== Rectangular waveguide ==== | |
− | + | ||
− | + | Let us consider a rectangular waveguide $(x,y)\in[0,a]\times[0,b]$ | |
− | |||
that has a principal axis in the $z-$direction. | that has a principal axis in the $z-$direction. | ||
* For TM modes, the solutions for $E_z$ are | * For TM modes, the solutions for $E_z$ are | ||
Line 108: | Line 105: | ||
\omega_{mn}^2 &= \frac{\pi}{\sqrt{\mu\varepsilon}}\sqrt{\frac{m^2}{a^2}+\frac{n^2}{b^2}} && \text{with } m,n=0,1,2,... | \omega_{mn}^2 &= \frac{\pi}{\sqrt{\mu\varepsilon}}\sqrt{\frac{m^2}{a^2}+\frac{n^2}{b^2}} && \text{with } m,n=0,1,2,... | ||
\end{align} | \end{align} | ||
+ | |||
+ | The transverse components can now be solved for. Starting with the TM Modes ($H_z = 0$), | ||
+ | |||
+ | \begin{align} | ||
+ | {\bf E}_t =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{E}_z - \mu\omega\:\hat{\bf z}\times\nabla_t{H}_z\right] \\ | ||
+ | =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{E}_z -0 \right]\\ | ||
+ | =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t E_0 \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} \right]\\ | ||
+ | =& \frac{i}{\mu\varepsilon\omega^2-k^2} | ||
+ | \left[\pm\:k\:E_0\left(\frac{m\pi}{a}\cos\left(\frac{m\pi x}{a}\right) | ||
+ | \sin\left(\frac{n\pi y}{b}\right)\hat{\bf x}+ \right.\right. \left.\left. \frac{n\pi}{b}\sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi | ||
+ | y}{b}\right)\hat{\bf y}\right) e^{ikz-i\omega t} \right] | ||
+ | \end{align} | ||
+ | |||
+ | Separating out the factors, then the complete $E$ field descriptions are then: | ||
+ | |||
+ | \begin{align} | ||
+ | {\bf E}_x =& \frac{i}{\mu\varepsilon\omega^2-k^2} | ||
+ | \left[\pm\:k\:E_0\frac{m\pi}{a}\cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)\right] e^{ikz-i\omega t}\hat{\bf x} | ||
+ | \end{align} | ||
+ | \begin{align} | ||
+ | {\bf E}_y =& \frac{i}{\mu\varepsilon\omega^2-k^2} | ||
+ | \left[\pm\:k\:E_0 \frac{n\pi}{b}\sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)\right] e^{ikz-i\omega t}\hat{\bf y} | ||
+ | \end{align} | ||
+ | \begin{align} | ||
+ | {\bf E}_z &= E_0 \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) | ||
+ | e^{ikz-i\omega t} \hat{\bf z} | ||
+ | \end{align} | ||
+ | |||
+ | |||
+ | We can then use the relationship between TE and TM modes to solve for the complete $H$ fields. | ||
+ | |||
+ | \begin{align} | ||
+ | {\bf H}_t & = \pm\frac{1}{Z} \hat{\bf z}\times{\bf E}_t \\ | ||
+ | & = \pm\frac{1}{Z} \left(-{\bf E}_y,{\bf E}_x\right) | ||
+ | \end{align} | ||
+ | \begin{align} | ||
+ | {\bf H}_x =& \mp \frac{k_0}{k} \sqrt{\frac{\varepsilon}{\mu}} \frac{i}{\mu\varepsilon\omega^2-k^2} | ||
+ | \left[\pm\:k\:E_0 \frac{n\pi}{b}\sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)\right] e^{ikz-i\omega t}\hat{\bf x} | ||
+ | \end{align} | ||
+ | \begin{align} | ||
+ | {\bf H}_y =& \pm \frac{k_0}{k} \sqrt{\frac{\varepsilon}{\mu}}\frac{i}{\mu\varepsilon\omega^2-k^2} | ||
+ | \left[\pm\:k\:E_0\frac{m\pi}{a}\cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)\right] e^{ikz-i\omega t}\hat{\bf y} | ||
+ | \end{align} | ||
+ | \begin{align} | ||
+ | {\bf H}_z &= 0 | ||
+ | \end{align} | ||
+ | Now for the TE, modes, so $E_z=0$, therefore: | ||
+ | |||
+ | \begin{align} | ||
+ | {\bf H}_t =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{H}_z + | ||
+ | \varepsilon\omega\:\hat{\bf z}\times\nabla_t{E}_z\right]\\ | ||
+ | =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{H}_z \right]\\ | ||
+ | =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t H_0 | ||
+ | \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} | ||
+ | \right] \\ | ||
+ | =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\mp\:k\: | ||
+ | H_0\left(\frac{m\pi}{a} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi | ||
+ | y}{b}\right)\hat{\bf x}+ \right. | ||
+ | \right. \left.\left.\frac{n\pi}{b}\cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)\hat{\bf y} \right)e^{ikz-i\omega t} \right] | ||
+ | \end{align} | ||
+ | |||
+ | Seperating out the factors, then the complete $H$ field descriptions are then: | ||
+ | |||
+ | \begin{align} | ||
+ | {\bf H}_x =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\mp\:k\: | ||
+ | H_0\frac{m\pi}{a} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi | ||
+ | y}{b}\right)e^{ikz-i\omega t} \right]\hat{\bf x} | ||
+ | \end{align} | ||
+ | |||
+ | \begin{align} | ||
+ | {\bf H}_y =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\mp\:k\: | ||
+ | H_0\frac{n\pi}{b}\cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)e^{ikz-i\omega t} \right]\hat{\bf y} | ||
+ | \end{align} | ||
+ | |||
+ | \begin{align} | ||
+ | {\bf H}_z &= H_0 \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} \hat{\bf z} | ||
+ | \end{align} | ||
+ | |||
+ | Once again we can use the relationship between TE and TM modes to solve for the $E$ fields: | ||
+ | |||
+ | \begin{align} | ||
+ | {\bf E}_t & = \pm Z \left({\bf H}_y,-{\bf H}_x\right) | ||
+ | \end{align} | ||
+ | |||
+ | \begin{align} | ||
+ | {\bf E}_x =& \pm \frac{k_0}{k} \sqrt{\frac{\mu}{\varepsilon}} \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\mp\:k\: | ||
+ | H_0\frac{n\pi}{b}\cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)e^{ikz-i\omega t} \right]\hat{\bf x} | ||
+ | \end{align} | ||
+ | |||
+ | \begin{align} | ||
+ | {\bf E}_y =& \mp \frac{k_0}{k} \sqrt{\frac{\mu}{\varepsilon}} \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\mp\:k\: | ||
+ | H_0\frac{m\pi}{a} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi | ||
+ | y}{b}\right)e^{ikz-i\omega t} \right]\hat{\bf y} | ||
+ | \end{align} | ||
+ | |||
+ | \begin{align} | ||
+ | {\bf E}_z =&0 | ||
+ | \end{align} | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <!-- | ||
+ | |||
The complete solution for the TM<sub>10</sub> and TE<sub>10</sub> modes are, respectively, | The complete solution for the TM<sub>10</sub> and TE<sub>10</sub> modes are, respectively, | ||
\begin{align} | \begin{align} | ||
Line 122: | Line 224: | ||
\end{cases} | \end{cases} | ||
\end{align} | \end{align} | ||
− | |||
− | |||
+ | --> | ||
+ | |||
+ | === Discontinuities and networks === | ||
+ | |||
+ | ==== Discontinuity in a parallel-plate waveguide ==== | ||
− | + | See <ref name=Jin2002 />, section 4.6.1. | |
− | |||
− | |||
− | |||
* Solution for the TE mode | * Solution for the TE mode | ||
Line 150: | Line 252: | ||
\end{align} | \end{align} | ||
: with $|R|^2+|T|^2=1$. | : with $|R|^2+|T|^2=1$. | ||
− | |||
− | + | ||
− | + | ==== Waveguide with discontinuities ==== | |
− | + | ||
− | + | See <ref name=Jin2002 />, section 8.5. | |
* Solution for the TE$_{mn}$ mode | * Solution for the TE$_{mn}$ mode | ||
Line 176: | Line 277: | ||
\end{align} | \end{align} | ||
: with $|R|^2+|T|^2=1$. | : with $|R|^2+|T|^2=1$. | ||
− | |||
− | |||
+ | <!-- | ||
== Some results == | == Some results == | ||
Here will be some snapshots and validation cases. | Here will be some snapshots and validation cases. | ||
+ | --> | ||
== References == | == References == | ||
Line 190: | Line 291: | ||
</references> | </references> | ||
− | |||
{{metamodelfooter|waveguides}} | {{metamodelfooter|waveguides}} |
Latest revision as of 14:07, 10 July 2017
2D and 3D models of metallic waveguides
|
Download model archive (waveguides.zip) |
\(\renewcommand{\vec}[1]{\mathbf{#1}} \newcommand{\Grad}[1]{\mathbf{\text{grad}}\,{#1}} \newcommand{\Curl}[1]{\mathbf{\text{curl}}\,{#1}} \newcommand{\Div}[1]{\text{div}\,{#1}} \newcommand{\Real}[1]{\text{Re}({#1})} \newcommand{\Imag}[1]{\text{Im}({#1})} \newcommand{\pvec}[2]{{#1}\times{#2}} \newcommand{\psca}[2]{{#1}\cdot{#2}} \newcommand{\E}[1]{\,10^{#1}} \newcommand{\Ethree}{{\mathbb{E}^3}} \newcommand{\Etwo}{{\mathbb{E}^2}} \newcommand{\Units}[1]{[\mathrm{#1}]} \)
Contents
Additional information
To run the model, open main.pro or a file .pro with Gmsh.
Description of the model
Classical waveguides
General case
Let us consider a hollow cylindrical waveguide of arbitrary cross-sectional shape that has a principal axis in the $z$-direction. The elementary solution of this problem reads \begin{align} {\bf E}(x,y,z,t) &= {\bf E}(x,y) \: e^{i(\pm kz-\omega t)} \\ {\bf H}(x,y,z,t) &= {\bf H}(x,y) \: e^{i(\pm kz-\omega t)} \end{align} where the new unknowns are governed by \begin{align} \left[\nabla_t^2 + (\mu\varepsilon\omega^2 - k^2)\right] \left\{\begin{array}{x}{\bf E}\\{\bf H}\end{array}\right\} = 0 \end{align} where $\nabla_t$ is the transverse part of the Nabla operator.
Parallel and transverse fields
It is useful to separate the fields into components parallel to and transverse to the $z$-direction: \begin{align} {\bf E} &= {\bf E}_z + {\bf E}_t && \text{with } {\bf E}_z = {E}_z \hat{\bf z} \\ {\bf H} &={\bf H}_z + {\bf H}_t && \text{with } {\bf H}_z = {H}_z \hat{\bf z} \end{align}
Some well-known cases:
- Transverse electromagnetic (TEM) waves: if ${E}_z=0$ and ${H}_z=0$ everywhere
- Transverse magnetic (TM) waves: if ${H}_z=0$ everywhere
- Transverse electric (TE) waves: if ${E}_z=0$ everywhere
If both parallel fields are vanishing (TEM case), the transverse fields are the solution of an electrostatic problem in two dimensions.
If at least one parallel field is non-vanishing, the transverse fields are \begin{align} {\bf E}_t &= \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{E}_z - \mu\omega\:\hat{\bf z}\times\nabla_t{H}_z\right] \\ {\bf H}_t &= \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{H}_z + \varepsilon\omega\:\hat{\bf z}\times\nabla_t{E}_z\right] \end{align}
In TEM, TM and TE cases, the transverse fields are related by \begin{equation} {\bf H}_t = \pm\frac{1}{Z} \hat{\bf z}\times{\bf E}_t \end{equation} where the wave impedance $Z$ is given by \begin{equation} Z= \left\{\begin{array}{ll} \sqrt{\frac{\mu}{\varepsilon}} &\quad \text{(TEM case)} \\ \frac{k}{k_0} \sqrt{\frac{\mu}{\varepsilon}} &\quad \text{(TM case)} \\ \frac{k_0}{k} \sqrt{\frac{\mu}{\varepsilon}} &\quad \text{(TE case)} \end{array}\right. \end{equation} with $k_0=\omega\sqrt{\mu\varepsilon}$.
Eigenvalue problem
For a waveguide with perfectly conducting borders, the non-vanishing parallel field of TM and TE cases is governed by, respectively, \begin{align} \left[\nabla_t^2 + \gamma^2\right] {E}_z &= 0 \\ \left[\nabla_t^2 + \gamma^2\right] {H}_z &= 0 \end{align} with $\gamma^2 = \mu\varepsilon\omega^2 - k^2$, and is subject to the homogeneous boundary condition ${E}_z=0$ (TM case) or ${\bf n}\cdot\nabla{H}_z = 0$ (TE case).
These equations define eigenvalue problems. There is a spectrum of eigenvalues $\gamma^2_\ell$ and corresponding solutions $\left.E_z\right|_\ell$ or $\left.H_z\right|_\ell$, $\ell=1,2,...$, which form an orthogonal set. For a given frequency $\omega$, the wave number $k$ is determined for each $\ell$: \begin{equation} k_\ell = \sqrt{\mu\varepsilon\omega^2-\gamma^2_\ell} = \sqrt{\mu\varepsilon} \sqrt{\omega^2-\omega^2_\ell} \end{equation} where $\omega_\ell$ is the cutoff frequency, defined by \begin{equation} \omega_\ell=\frac{\gamma_\ell}{\sqrt{\mu\varepsilon}} \end{equation} This frequency defines the nature of waves:
- If $\omega>\omega_\ell$, $k_\ell$ is real and the waves are travelling modes.
- If $\omega<\omega_\ell$, $k_\ell$ is imaginary and the waves are evanescent modes.
Rectangular waveguide
Let us consider a rectangular waveguide $(x,y)\in[0,a]\times[0,b]$ that has a principal axis in the $z-$direction.
- For TM modes, the solutions for $E_z$ are
\begin{align} \left.E_z\right|_{mn} &= E_0 \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} && \text{with } m,n=0,1,2,... \end{align}
- For TE modes, the solutions for $H_z$ are
\begin{align} \left.H_z\right|_{mn} &= H_0 \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} && \text{with } m,n=0,1,2,... \end{align} In both cases, the eigenvalues and the cutoff frequencies are, respectively, \begin{align} \gamma_{mn}^2 &= \pi^2\left(\frac{m^2}{a^2}+\frac{n^2}{b^2}\right) && \text{with } m,n=0,1,2,... \\ \omega_{mn}^2 &= \frac{\pi}{\sqrt{\mu\varepsilon}}\sqrt{\frac{m^2}{a^2}+\frac{n^2}{b^2}} && \text{with } m,n=0,1,2,... \end{align}
The transverse components can now be solved for. Starting with the TM Modes ($H_z = 0$),
\begin{align} {\bf E}_t =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{E}_z - \mu\omega\:\hat{\bf z}\times\nabla_t{H}_z\right] \\ =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{E}_z -0 \right]\\ =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t E_0 \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} \right]\\ =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:E_0\left(\frac{m\pi}{a}\cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)\hat{\bf x}+ \right.\right. \left.\left. \frac{n\pi}{b}\sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)\hat{\bf y}\right) e^{ikz-i\omega t} \right] \end{align}
Separating out the factors, then the complete $E$ field descriptions are then:
\begin{align} {\bf E}_x =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:E_0\frac{m\pi}{a}\cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)\right] e^{ikz-i\omega t}\hat{\bf x} \end{align} \begin{align} {\bf E}_y =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:E_0 \frac{n\pi}{b}\sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)\right] e^{ikz-i\omega t}\hat{\bf y} \end{align} \begin{align} {\bf E}_z &= E_0 \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} \hat{\bf z} \end{align}
We can then use the relationship between TE and TM modes to solve for the complete $H$ fields.
\begin{align} {\bf H}_t & = \pm\frac{1}{Z} \hat{\bf z}\times{\bf E}_t \\ & = \pm\frac{1}{Z} \left(-{\bf E}_y,{\bf E}_x\right) \end{align} \begin{align} {\bf H}_x =& \mp \frac{k_0}{k} \sqrt{\frac{\varepsilon}{\mu}} \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:E_0 \frac{n\pi}{b}\sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)\right] e^{ikz-i\omega t}\hat{\bf x} \end{align} \begin{align} {\bf H}_y =& \pm \frac{k_0}{k} \sqrt{\frac{\varepsilon}{\mu}}\frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:E_0\frac{m\pi}{a}\cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)\right] e^{ikz-i\omega t}\hat{\bf y} \end{align} \begin{align} {\bf H}_z &= 0 \end{align} Now for the TE, modes, so $E_z=0$, therefore:
\begin{align} {\bf H}_t =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{H}_z + \varepsilon\omega\:\hat{\bf z}\times\nabla_t{E}_z\right]\\ =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{H}_z \right]\\ =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t H_0 \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} \right] \\ =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\mp\:k\: H_0\left(\frac{m\pi}{a} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)\hat{\bf x}+ \right. \right. \left.\left.\frac{n\pi}{b}\cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)\hat{\bf y} \right)e^{ikz-i\omega t} \right] \end{align}
Seperating out the factors, then the complete $H$ field descriptions are then:
\begin{align} {\bf H}_x =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\mp\:k\: H_0\frac{m\pi}{a} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)e^{ikz-i\omega t} \right]\hat{\bf x} \end{align}
\begin{align} {\bf H}_y =& \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\mp\:k\: H_0\frac{n\pi}{b}\cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)e^{ikz-i\omega t} \right]\hat{\bf y} \end{align}
\begin{align} {\bf H}_z &= H_0 \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} \hat{\bf z} \end{align}
Once again we can use the relationship between TE and TM modes to solve for the $E$ fields:
\begin{align} {\bf E}_t & = \pm Z \left({\bf H}_y,-{\bf H}_x\right) \end{align}
\begin{align} {\bf E}_x =& \pm \frac{k_0}{k} \sqrt{\frac{\mu}{\varepsilon}} \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\mp\:k\: H_0\frac{n\pi}{b}\cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)e^{ikz-i\omega t} \right]\hat{\bf x} \end{align}
\begin{align} {\bf E}_y =& \mp \frac{k_0}{k} \sqrt{\frac{\mu}{\varepsilon}} \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\mp\:k\: H_0\frac{m\pi}{a} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)e^{ikz-i\omega t} \right]\hat{\bf y} \end{align}
\begin{align} {\bf E}_z =&0 \end{align}
Discontinuities and networks
Discontinuity in a parallel-plate waveguide
See [1], section 4.6.1.
- Solution for the TE mode
\begin{align} H_z &= H_0 e^{-jk_0 x} + R H_0 e^{jk_0 x} && \text{at } x=x_1 \\ H_z &= T H_0 e^{-jk_0 x} && \text{at } x=x_2 \end{align}
- Boundary conditions
\begin{align} \partial_x H_z &= jk_0 H_z - 2jk_0H_0 e^{-jk_0 x} && \text{at } x=x_1 \\ \partial_x H_z &= -jk_0 H_z && \text{at } x=x_2 \end{align}
- Reflection and transmission coefficients
\begin{align} R &= \left.\frac{H_z - H_0 e^{-jk_0x}}{H_0 e^{ jk_0 x}}\right|_{x=x_1} \\ T &= \left.\frac{H_z}{H_0 e^{-jk_0 x}}\right|_{x=x_2} \end{align}
- with $|R|^2+|T|^2=1$.
Waveguide with discontinuities
See [1], section 8.5.
- Solution for the TE$_{mn}$ mode
\begin{align} {\bf E}(x,y,z) &= E_0 {\bf e}_{mn}(x,y) e^{-jk_{z_{mn}} z} + R E_0 {\bf e}_{mn}(x,y) e^{jk_{z_{mn}} z} && \text{at } z=z_1 \\ {\bf E}(x,y,z) &= T E_0 {\bf e}_{mn}(x,y) e^{-jk_{z_{mn}} z} && \text{at } z=z_2 \end{align}
- Reflection and transmission coefficients
\begin{align} R &= \left.\frac{{\bf E}(x,y,z) - E_0 {\bf e}_{mn}(x,y) e^{-jk_{z_{10}}z}}{E_0 {\bf e}_{mn}(x,y) e^{jk_{z_{10}}z}}\right|_{z=z_1} \\ T &= \left.\frac{{\bf E}(x,y,z)}{E_0 {\bf e}_{mn}(x,y) e^{-jk_{z_{10}}z}}\right|_{z=z_2} \end{align}
- with $|R|^2+|T|^2=1$.
- Reflection and transmission coefficients (improved - the dominant mode $mn$ - using the orthogonality properties of modes)
\begin{align} R &= \frac{e^{-jk_{z_{mn}}z_1}}{E_0} \frac{\int_{S_1}{\bf E}(x,y,z)\cdot{\bf e}_{mn}(x,y) \: dS}{\int_{S_1}{\bf e}_{mn}(x,y)\cdot{\bf e}_{mn}(x,y) \: dS} - e^{-2jk_{z_{mn}}z_1}\\ T &= \frac{e^{jk_{z_{mn}}z_2}}{E_0} \frac{\int_{S_2}{\bf E}(x,y,z)\cdot{\bf e}_{mn}(x,y) \: dS}{\int_{S_2}{\bf e}_{mn}(x,y)\cdot{\bf e}_{mn}(x,y) \: dS} \end{align}
- with $|R|^2+|T|^2=1$.
References
- ↑ 1.0 1.1 J. Jin, The Finite Element Method in Electromagnetics. Second edition. John Wiley & Sons, 2002
Model developed by A. Modave, B. Klein and C. Geuzaine
|