Difference between revisions of "Bloch modes in periodic waveguides"
From ONELAB
Line 1: | Line 1: | ||
{{metamodel|bloch_periodic_waveguides}} | {{metamodel|bloch_periodic_waveguides}} | ||
− | <ref name=Zolla2005 />, | + | == Additional information == |
− | <ref name=Nicolet2004 /> | + | |
+ | Open '''rhombus.pro''' with Gmsh. The model will automatically compute the dispersion curves of Figure 3.16, p. 152 of Foundations Of Photonic Crystal Fibres<ref name=Zolla2005 />, using a finite element formulation with Floquet-Bloch conditions<ref name=Nicolet2004 />. You can double-click on any point in the dispersion curves to visualize the corresponding eigenmode. | ||
== References == | == References == |
Revision as of 17:47, 25 July 2014
Bloch modes in periodic waveguides.
|
Download model archive (bloch_periodic_waveguides.zip) |
Additional information
Open rhombus.pro with Gmsh. The model will automatically compute the dispersion curves of Figure 3.16, p. 152 of Foundations Of Photonic Crystal Fibres[1], using a finite element formulation with Floquet-Bloch conditions[2]. You can double-click on any point in the dispersion curves to visualize the corresponding eigenmode.
References
- ↑ F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, Foundations Of Photonic Crystal Fibres, Imperial College Press, 2005.
- ↑ A. Nicolet, S. Guenneau, C. Geuzaine, F. Zolla, Modelling of electromagnetic waves in periodic media with finite elements, Journal of Computational and Applied Mathematics 168 (1), 321-329, 2004.
Model developed by A. Nicolet, F. Zolla and C. Geuzaine.
|