Difference between revisions of "Shielding effectiveness"

From ONELAB
Jump to: navigation, search
(References)
 
Line 30: Line 30:
  
 
{{metamodelfooter|shielding}}
 
{{metamodelfooter|shielding}}
 
<div class="references-small"><references/></div>
 

Latest revision as of 14:06, 10 July 2017

2D and 3D models of cavities for electromagnetic shielding

Download model archive (shielding.zip)
Browse individual model files and modification history

\(\renewcommand{\vec}[1]{\mathbf{#1}} \newcommand{\Grad}[1]{\mathbf{\text{grad}}\,{#1}} \newcommand{\Curl}[1]{\mathbf{\text{curl}}\,{#1}} \newcommand{\Div}[1]{\text{div}\,{#1}} \newcommand{\Real}[1]{\text{Re}({#1})} \newcommand{\Imag}[1]{\text{Im}({#1})} \newcommand{\pvec}[2]{{#1}\times{#2}} \newcommand{\psca}[2]{{#1}\cdot{#2}} \newcommand{\E}[1]{\,10^{#1}} \newcommand{\Ethree}{{\mathbb{E}^3}} \newcommand{\Etwo}{{\mathbb{E}^2}} \newcommand{\Units}[1]{[\mathrm{#1}]} \)

Introduction

The effectiveness of electromagnetic shields is evaluated in this example. Different academic cavities are considered [1][2][3].

To run the model, open main.pro with Gmsh.

Shielding effectiveness

In the time-harmonic context, the ability of a cavity to reduce a signal is quantified by the shielding effectiveness, defined by \begin{equation} 20\:\log_{10} \left|\frac{E^{\text{inc}}}{E^{\text{trans}}}\right| \quad\quad [\text{dB}] \end{equation} where $E^{\text{inc}}$ and $E^{\text{trans}}$ and the amplitudes of the incident wave and the transmitted one, respectively.

References

  1. M. Boubekeur, A. Kameni, L. Pichon, A. Modave and C. Geuzaine, Analysis of transient scattering problems using a discontinuous Galerkin method: application to the shielding effectiveness of enclosures with heterogeneous walls. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 27(3), pp. 626-635, 2014.
  2. J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter and D. W. P. Thomas, Analytical Formulation for the Shielding Effectiveness of Enclosures with Apertures. IEEE Transactions on Electromagnetic Compatibility, 40(3), pp. 240-248, 1998.
  3. X. Ojeda and L. Pichon, Combining the Finite Element Method and a Padé Approximation for Scattering Analysis Application to Radiated Electromagnetic Compatibility Problems. Journal of Electromagnetic Waves and Applications, 19(40), pp. 1375-1390, 2005.

Model developed by A. Modave.