Difference between revisions of "Superconducting wire"

From ONELAB
Jump to: navigation, search
Line 5: Line 5:
 
To run the model, open '''helix.pro''' with Gmsh.
 
To run the model, open '''helix.pro''' with Gmsh.
  
See <ref name=Stenvall /> <ref name=Kameni2012 /> <ref name= Pellika2013 />.
+
The model uses a 3D H-formulation and the Gmsh cohomology solver <ref name= Pellika2013 /><ref name=Stenvall2014 />. The nonlinear superconductor material law $\rho=\frac{E_c}{J_c}(\frac{\|\vec{J}\|}{J_c})^{n-1}$ is linearized as in <ref name=Kameni2012 />.
  
 
== References ==
 
== References ==
Line 11: Line 11:
 
<references>
 
<references>
  
<ref name=Stenvall>A. Stenvall, </ref>
+
<ref name=Pellika2013> M. Pellikka, S. Suuriniemi, L. Kettunen and C. Geuzaine, [http://geuz.org/gmsh/doc/preprints/gmsh_homology_preprint.pdf Homology and cohomology computation in finite element modeling]. SIAM Journal on Scientific Computing 35(5), pp. 1195-1214, 2013.</ref>
 +
 
 +
<ref name=Stenvall2014>A. Stenvall, V. Lahtinen and M. Lyly. An H-formulation-based three-dimensional hysteresis loss modelling tool in a simulation including time varying applied field and transport current: the fundamental problem and its solution. Supercond. Sci. Technol. 27 (2014) 104004 (7pp)</ref>
  
 
<ref name=Kameni2012>A. Kameni, J. Lambrechts, J.-F. Remacle, S. Mezani, F. Bouillaut and C. Geuzaine. [http://orbi.ulg.ac.be/handle/2268/113659 Discontinuous Galerkin Method for Computing Induced Fields in Superconducting Materials]. IEEE Transactions on Magnetics 48(2), pp 591-594, 2012.</ref>
 
<ref name=Kameni2012>A. Kameni, J. Lambrechts, J.-F. Remacle, S. Mezani, F. Bouillaut and C. Geuzaine. [http://orbi.ulg.ac.be/handle/2268/113659 Discontinuous Galerkin Method for Computing Induced Fields in Superconducting Materials]. IEEE Transactions on Magnetics 48(2), pp 591-594, 2012.</ref>
 
<ref name=Pellika2013> M. Pellikka, S. Suuriniemi, L. Kettunen and C. Geuzaine, [http://geuz.org/gmsh/doc/preprints/gmsh_homology_preprint.pdf Homology and cohomology computation in finite element modeling]. SIAM Journal on Scientific Computing 35(5), pp. 1195-1214, 2013.</ref>
 
  
 
</references>
 
</references>
  
 
{{metamodelfooter|superconductors}}
 
{{metamodelfooter|superconductors}}

Revision as of 08:13, 28 July 2015

2D and 3D models of superconducting wires.

Download model archive (superconductors.zip)
Browse individual model files and modification history

Additional information

To run the model, open helix.pro with Gmsh.

The model uses a 3D H-formulation and the Gmsh cohomology solver [1][2]. The nonlinear superconductor material law $\rho=\frac{E_c}{J_c}(\frac{\|\vec{J}\|}{J_c})^{n-1}$ is linearized as in [3].

References

  1. M. Pellikka, S. Suuriniemi, L. Kettunen and C. Geuzaine, Homology and cohomology computation in finite element modeling. SIAM Journal on Scientific Computing 35(5), pp. 1195-1214, 2013.
  2. A. Stenvall, V. Lahtinen and M. Lyly. An H-formulation-based three-dimensional hysteresis loss modelling tool in a simulation including time varying applied field and transport current: the fundamental problem and its solution. Supercond. Sci. Technol. 27 (2014) 104004 (7pp)
  3. A. Kameni, J. Lambrechts, J.-F. Remacle, S. Mezani, F. Bouillaut and C. Geuzaine. Discontinuous Galerkin Method for Computing Induced Fields in Superconducting Materials. IEEE Transactions on Magnetics 48(2), pp 591-594, 2012.

Model developed by C. Geuzaine, A. Kameni and A. Stenvall.