Difference between revisions of "Waveguides"

From ONELAB
Jump to: navigation, search
(Created page with "{{metamodel|waveguides}} {{mytexdefs}} == Introduction == This academic example introduces the numerical solution of eigenvalue problems. The Helmholtz equation (scalar and...")
 
Line 4: Line 4:
  
 
== Introduction ==
 
== Introduction ==
 
This academic example introduces the numerical solution of eigenvalue problems.
 
The Helmholtz equation (scalar and vector versions) is considered with homogeneous Dirichlet boundary conditions,
 
for different basic geometries (i.e. linear, squared, circular and cuboid domain).
 
These problems have a family of solutions. The eigenvalue solver used for this example
 
provide the first eigenvalues and the associated eigenfunctions (i.e. the first possible solutions).
 
  
 
  $\rightarrow$ To run the example, open '''main.pro''' with Gmsh.
 
  $\rightarrow$ To run the example, open '''main.pro''' with Gmsh.
Line 15: Line 9:
 
== Description of the problem ==
 
== Description of the problem ==
  
==== Mathematical and numerical formulations ====
+
==== Classical waveguides ====
 +
 
 +
:{| class="toccolours mw-collapsible mw-collapsed" width="80%" style="text-align:left"
 +
!General waveguide
 +
|-
 +
|  Let us consider a hollow cylindrical waveguide of arbitrary cross-sectional shape that has a principal axis in the $z$-direction.
 +
The elementary solution of this problem reads
 +
\begin{align}
 +
  {\bf E}(x,y,z,t) &= {\bf E}(x,y) \: e^{i(\pm kz-\omega t)} \\
 +
  {\bf H}(x,y,z,t) &= {\bf H}(x,y) \: e^{i(\pm kz-\omega t)}
 +
\end{align}
 +
where the new unknowns are governed by
 +
\begin{align}
 +
  \left[\nabla_t^2 + (\mu\varepsilon\omega^2 - k^2)\right] \left\{\begin{array}{x}{\bf E}\\{\bf H}\end{array}\right\} = 0
 +
\end{align}
 +
where $\nabla_t$ is the transverse part of the Nabla operator.
 +
 
 +
''' Parallel and transverse fields '''
 +
 
 +
It is useful to separate the fields into components parallel to and transverse to the $z$-direction:
 +
\begin{align}
 +
  {\bf E} &= {\bf E}_z + {\bf E}_t && \text{with } {\bf E}_z = {E}_z \hat{\bf z} \\
 +
  {\bf H} &={\bf H}_z + {\bf H}_t && \text{with } {\bf H}_z = {H}_z \hat{\bf z}
 +
\end{align}
 +
 
 +
Some well-known cases:
 +
* Transverse electromagnetic (TEM) waves: if ${E}_z=0$ and ${H}_z=0$ everywhere
 +
* Transverse magnetic (TM) waves: if ${H}_z=0$ everywhere
 +
* Transverse electric (TE) waves: if ${E}_z=0$ everywhere
 +
 
 +
If both parallel fields are vanishing (TEM case), the transverse fields are the solution of an electrostatic problem in two dimensions.
 +
 
 +
If at least one parallel field is non-vanishing, the transverse fields are
 +
\begin{align}
 +
  {\bf E}_t &= \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{E}_z - \mu\omega\:\hat{\bf z}\times\nabla_t{H}_z\right] \\
 +
  {\bf H}_t &= \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{H}_z + \varepsilon\omega\:\hat{\bf z}\times\nabla_t{E}_z\right]
 +
\end{align}
 +
 
 +
In TEM, TM and TE cases, the transverse fields are related by
 +
\begin{equation}
 +
  {\bf H}_t = \pm\frac{1}{Z} \hat{\bf z}\times{\bf E}_t
 +
\end{equation}
 +
where the wave impedance $Z$ is given by
 +
\begin{equation}
 +
  Z=
 +
  \left\{\begin{array}{ll}
 +
    \sqrt{\frac{\mu}{\varepsilon}} &\quad \text{(TEM case)} \\
 +
    \frac{k}{k_0} \sqrt{\frac{\mu}{\varepsilon}} &\quad \text{(TM case)} \\
 +
    \frac{k_0}{k} \sqrt{\frac{\mu}{\varepsilon}} &\quad \text{(TE case)}
 +
  \end{array}\right.
 +
\end{equation}
 +
with $k_0=\omega\sqrt{\mu\varepsilon}$.
 +
 
 +
''' Eigenvalue problem '''
 +
 
 +
For a waveguide with perfectly conducting borders, the non-vanishing parallel field of TM and TE cases
 +
is governed by, respectively,
 +
\begin{align}
 +
  \left[\nabla_t^2 + \gamma^2\right] {E}_z &= 0 \\
 +
  \left[\nabla_t^2 + \gamma^2\right] {H}_z &= 0
 +
\end{align}
 +
with $\gamma^2 = \mu\varepsilon\omega^2 - k^2$,
 +
and is subject to the homogeneous boundary condition ${E}_z=0$ (TM case) or ${\bf n}\cdot\nabla{H}_z = 0$ (TE case).
 +
 
 +
These equations define eigenvalue problems.
 +
There is a spectrum of eigenvalues $\gamma^2_\ell$ and corresponding solutions $\left.E_z\right|_\ell$ or $\left.H_z\right|_\ell$, $\ell=1,2,...$,
 +
which form an orthogonal set. For a given frequency $\omega$, the wave number $k$ is determined for each $\ell$:
 +
\begin{equation}
 +
  k_\ell
 +
    = \sqrt{\mu\varepsilon\omega^2-\gamma^2_\ell}
 +
    = \sqrt{\mu\varepsilon} \sqrt{\omega^2-\omega^2_\ell}
 +
\end{equation}
 +
where $\omega_\ell$ is the cutoff frequency, defined by
 +
\begin{equation}
 +
  \omega_\ell=\frac{\gamma_\ell}{\sqrt{\mu\varepsilon}}
 +
\end{equation}
 +
This frequency defines the nature of waves:
 +
* If $\omega>\omega_\ell$, $k_\ell$ is real and the waves are travelling modes.
 +
* If $\omega<\omega_\ell$, $k_\ell$ is imaginary and the waves are evanescent modes.
 +
|}
 +
 
 +
:{| class="toccolours mw-collapsible mw-collapsed" width="80%" style="text-align:left"
 +
!Rectangular waveguide
 +
|-
 +
|  Let us consider a rectangular waveguide $(x,y)\in[0,a]\times[0,b]$
 +
that has a principal axis in the $z-$direction.
 +
* For TM modes, the solutions for $E_z$ are
 +
\begin{align}
 +
  \left.E_z\right|_{mn} &= E_0 \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} && \text{with } m,n=0,1,2,...
 +
\end{align}
 +
* For TE modes, the solutions for $H_z$ are
 +
\begin{align}
 +
  \left.H_z\right|_{mn} &= H_0 \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} && \text{with } m,n=0,1,2,...
 +
\end{align}
 +
In both cases, the eigenvalues and the cutoff frequencies are, respectively,
 +
\begin{align}
 +
  \gamma_{mn}^2 &= \pi^2\left(\frac{m^2}{a^2}+\frac{n^2}{b^2}\right) && \text{with } m,n=0,1,2,... \\
 +
  \omega_{mn}^2 &= \frac{\pi}{\sqrt{\mu\varepsilon}}\sqrt{\frac{m^2}{a^2}+\frac{n^2}{b^2}} && \text{with } m,n=0,1,2,...
 +
\end{align}
 +
The complete solution for the TM<sub>10</sub> and TE<sub>10</sub> modes are, respectively,
 +
\begin{align}
 +
  \begin{cases}
 +
    \displaystyle E_z = E_0 \sin\left(\frac{\pi x}{a}\right) e^{ikz-i\omega t} \\
 +
    \displaystyle E_x = i\frac{ka}{\pi} E_0 \cos\left(\frac{\pi x}{a}\right) e^{ikz-i\omega t} \\
 +
    \displaystyle H_y = i\frac{\varepsilon\omega a}{\pi} E_0 \cos\left(\frac{\pi x}{a}\right) e^{ikz-i\omega t}
 +
  \end{cases}
 +
  \quad\quad\text{and}\quad\quad
 +
  \begin{cases}
 +
    \displaystyle H_z = H_0 \cos\left(\frac{\pi x}{a}\right) e^{ikz-i\omega t} \\
 +
    \displaystyle H_x = -i\frac{ka}{\pi} H_0 \sin\left(\frac{\pi x}{a}\right) e^{ikz-i\omega t} \\
 +
    \displaystyle E_y =i\frac{\mu\omega a}{\pi} H_0 \sin\left(\frac{\pi x}{a}\right) e^{ikz-i\omega t}
 +
  \end{cases}
 +
\end{align}
 +
|}
 +
 
 +
==== Discontinuities and networks ====
 +
 
 +
 
 +
:{| class="toccolours mw-collapsible mw-collapsed" width="80%" style="text-align:left"
 +
!Discontinuity in a parallel-plate waveguide
 +
|-
 +
|  See <ref name=Jin2002 />, section 4.6.1.
 +
 
 +
* Solution for the TE mode
 +
\begin{align}
 +
  H_z &= H_0 e^{-jk_0 x} + R H_0 e^{jk_0 x} && \text{at } x=x_1 \\
 +
  H_z &= T H_0 e^{-jk_0 x} && \text{at } x=x_2
 +
\end{align}
 +
 
 +
* Boundary conditions
 +
\begin{align}
 +
  \partial_x H_z &= jk_0 H_z - 2jk_0H_0 e^{-jk_0 x} && \text{at } x=x_1 \\
 +
  \partial_x H_z &= -jk_0 H_z && \text{at } x=x_2
 +
\end{align}
 +
 
 +
* Reflection and transmission coefficients
 +
\begin{align}
 +
  R &= \left.\frac{H_z - H_0 e^{-jk_0x}}{H_0 e^{ jk_0 x}}\right|_{x=x_1} \\
 +
  T &= \left.\frac{H_z}{H_0 e^{-jk_0 x}}\right|_{x=x_2}
 +
\end{align}
 +
: with $|R|^2+|T|^2=1$.
 +
|}
 +
 
 +
:{| class="toccolours mw-collapsible mw-collapsed" width="80%" style="text-align:left"
 +
!Waveguide with discontinuities
 +
|-
 +
|  See <ref name=Jin2002 />, section 8.5.
 +
 
 +
* Solution for the TE$_{mn}$ mode
 +
\begin{align}
 +
  {\bf E}(x,y,z) &= E_0 {\bf e}_{mn}(x,y) e^{-jk_{z_{mn}} z} + R E_0 {\bf e}_{mn}(x,y) e^{jk_{z_{mn}} z} && \text{at } z=z_1 \\
 +
  {\bf E}(x,y,z) &= T E_0 {\bf e}_{mn}(x,y) e^{-jk_{z_{mn}} z} && \text{at } z=z_2
 +
\end{align}
 +
 
 +
* Reflection and transmission coefficients
 +
\begin{align}
 +
  R &= \left.\frac{{\bf E}(x,y,z) - E_0 {\bf e}_{mn}(x,y) e^{-jk_{z_{10}}z}}{E_0 {\bf e}_{mn}(x,y) e^{jk_{z_{10}}z}}\right|_{z=z_1} \\
 +
  T &= \left.\frac{{\bf E}(x,y,z)}{E_0 {\bf e}_{mn}(x,y) e^{-jk_{z_{10}}z}}\right|_{z=z_2}
 +
\end{align}
 +
: with $|R|^2+|T|^2=1$.
 +
 
 +
* Reflection and transmission coefficients (improved - the dominant mode $mn$ - using the orthogonality properties of modes)
 +
\begin{align}
 +
  R &= \frac{e^{-jk_{z_{mn}}z_1}}{E_0} \frac{\int_{S_1}{\bf E}(x,y,z)\cdot{\bf e}_{mn}(x,y) \: dS}{\int_{S_1}{\bf e}_{mn}(x,y)\cdot{\bf e}_{mn}(x,y) \: dS} - e^{-2jk_{z_{mn}}z_1}\\
 +
  T &= \frac{e^{jk_{z_{mn}}z_2}}{E_0}  \frac{\int_{S_2}{\bf E}(x,y,z)\cdot{\bf e}_{mn}(x,y) \: dS}{\int_{S_2}{\bf e}_{mn}(x,y)\cdot{\bf e}_{mn}(x,y) \: dS}
 +
\end{align}
 +
: with $|R|^2+|T|^2=1$.
 +
|}
 +
 
 +
==== Numerical resolution ====
 +
 
  
==== Waveguides ====
 
  
 
== Some results ==
 
== Some results ==
Line 27: Line 190:
 
<references>
 
<references>
  
<ref name=Evans2010> L.C. Evans, ''Partial Differential Equations''. Second edition. American Mathematical Society, 2010</ref>
 
 
<ref name=Jin2002> J. Jin, ''The Finite Element Method in Electromagnetics''. Second edition. John Wiley & Sons, 2002</ref>
 
<ref name=Jin2002> J. Jin, ''The Finite Element Method in Electromagnetics''. Second edition. John Wiley & Sons, 2002</ref>
  
Line 33: Line 195:
  
  
{{metamodelfooter|academic_eigenvalues}}
+
{{metamodelfooter|waveguides}}

Revision as of 11:43, 15 March 2014

2D and 3D models of metallic waveguides

Download model archive (waveguides.zip)
Browse individual model files

\(\renewcommand{\vec}[1]{\mathbf{#1}} \newcommand{\Grad}[1]{\mathbf{\text{grad}}\,{#1}} \newcommand{\Curl}[1]{\mathbf{\text{curl}}\,{#1}} \newcommand{\Div}[1]{\text{div}\,{#1}} \newcommand{\Real}[1]{\text{Re}({#1})} \newcommand{\Imag}[1]{\text{Im}({#1})} \newcommand{\pvec}[2]{{#1}\times{#2}} \newcommand{\psca}[2]{{#1}\cdot{#2}} \newcommand{\E}[1]{\,10^{#1}} \newcommand{\Ethree}{{\mathbb{E}^3}} \newcommand{\Etwo}{{\mathbb{E}^2}} \newcommand{\Units}[1]{[\mathrm{#1}]} \)

Introduction

$\rightarrow$ To run the example, open main.pro with Gmsh.

Description of the problem

Classical waveguides

General waveguide
Let us consider a hollow cylindrical waveguide of arbitrary cross-sectional shape that has a principal axis in the $z$-direction.

The elementary solution of this problem reads \begin{align} {\bf E}(x,y,z,t) &= {\bf E}(x,y) \: e^{i(\pm kz-\omega t)} \\ {\bf H}(x,y,z,t) &= {\bf H}(x,y) \: e^{i(\pm kz-\omega t)} \end{align} where the new unknowns are governed by \begin{align} \left[\nabla_t^2 + (\mu\varepsilon\omega^2 - k^2)\right] \left\{\begin{array}{x}{\bf E}\\{\bf H}\end{array}\right\} = 0 \end{align} where $\nabla_t$ is the transverse part of the Nabla operator.

Parallel and transverse fields

It is useful to separate the fields into components parallel to and transverse to the $z$-direction: \begin{align} {\bf E} &= {\bf E}_z + {\bf E}_t && \text{with } {\bf E}_z = {E}_z \hat{\bf z} \\ {\bf H} &={\bf H}_z + {\bf H}_t && \text{with } {\bf H}_z = {H}_z \hat{\bf z} \end{align}

Some well-known cases:

  • Transverse electromagnetic (TEM) waves: if ${E}_z=0$ and ${H}_z=0$ everywhere
  • Transverse magnetic (TM) waves: if ${H}_z=0$ everywhere
  • Transverse electric (TE) waves: if ${E}_z=0$ everywhere

If both parallel fields are vanishing (TEM case), the transverse fields are the solution of an electrostatic problem in two dimensions.

If at least one parallel field is non-vanishing, the transverse fields are \begin{align} {\bf E}_t &= \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{E}_z - \mu\omega\:\hat{\bf z}\times\nabla_t{H}_z\right] \\ {\bf H}_t &= \frac{i}{\mu\varepsilon\omega^2-k^2} \left[\pm\:k\:\nabla_t{H}_z + \varepsilon\omega\:\hat{\bf z}\times\nabla_t{E}_z\right] \end{align}

In TEM, TM and TE cases, the transverse fields are related by \begin{equation} {\bf H}_t = \pm\frac{1}{Z} \hat{\bf z}\times{\bf E}_t \end{equation} where the wave impedance $Z$ is given by \begin{equation} Z= \left\{\begin{array}{ll} \sqrt{\frac{\mu}{\varepsilon}} &\quad \text{(TEM case)} \\ \frac{k}{k_0} \sqrt{\frac{\mu}{\varepsilon}} &\quad \text{(TM case)} \\ \frac{k_0}{k} \sqrt{\frac{\mu}{\varepsilon}} &\quad \text{(TE case)} \end{array}\right. \end{equation} with $k_0=\omega\sqrt{\mu\varepsilon}$.

Eigenvalue problem

For a waveguide with perfectly conducting borders, the non-vanishing parallel field of TM and TE cases is governed by, respectively, \begin{align} \left[\nabla_t^2 + \gamma^2\right] {E}_z &= 0 \\ \left[\nabla_t^2 + \gamma^2\right] {H}_z &= 0 \end{align} with $\gamma^2 = \mu\varepsilon\omega^2 - k^2$, and is subject to the homogeneous boundary condition ${E}_z=0$ (TM case) or ${\bf n}\cdot\nabla{H}_z = 0$ (TE case).

These equations define eigenvalue problems. There is a spectrum of eigenvalues $\gamma^2_\ell$ and corresponding solutions $\left.E_z\right|_\ell$ or $\left.H_z\right|_\ell$, $\ell=1,2,...$, which form an orthogonal set. For a given frequency $\omega$, the wave number $k$ is determined for each $\ell$: \begin{equation} k_\ell = \sqrt{\mu\varepsilon\omega^2-\gamma^2_\ell} = \sqrt{\mu\varepsilon} \sqrt{\omega^2-\omega^2_\ell} \end{equation} where $\omega_\ell$ is the cutoff frequency, defined by \begin{equation} \omega_\ell=\frac{\gamma_\ell}{\sqrt{\mu\varepsilon}} \end{equation} This frequency defines the nature of waves:

  • If $\omega>\omega_\ell$, $k_\ell$ is real and the waves are travelling modes.
  • If $\omega<\omega_\ell$, $k_\ell$ is imaginary and the waves are evanescent modes.
Rectangular waveguide
Let us consider a rectangular waveguide $(x,y)\in[0,a]\times[0,b]$

that has a principal axis in the $z-$direction.

  • For TM modes, the solutions for $E_z$ are

\begin{align} \left.E_z\right|_{mn} &= E_0 \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} && \text{with } m,n=0,1,2,... \end{align}

  • For TE modes, the solutions for $H_z$ are

\begin{align} \left.H_z\right|_{mn} &= H_0 \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{ikz-i\omega t} && \text{with } m,n=0,1,2,... \end{align} In both cases, the eigenvalues and the cutoff frequencies are, respectively, \begin{align} \gamma_{mn}^2 &= \pi^2\left(\frac{m^2}{a^2}+\frac{n^2}{b^2}\right) && \text{with } m,n=0,1,2,... \\ \omega_{mn}^2 &= \frac{\pi}{\sqrt{\mu\varepsilon}}\sqrt{\frac{m^2}{a^2}+\frac{n^2}{b^2}} && \text{with } m,n=0,1,2,... \end{align} The complete solution for the TM10 and TE10 modes are, respectively, \begin{align} \begin{cases} \displaystyle E_z = E_0 \sin\left(\frac{\pi x}{a}\right) e^{ikz-i\omega t} \\ \displaystyle E_x = i\frac{ka}{\pi} E_0 \cos\left(\frac{\pi x}{a}\right) e^{ikz-i\omega t} \\ \displaystyle H_y = i\frac{\varepsilon\omega a}{\pi} E_0 \cos\left(\frac{\pi x}{a}\right) e^{ikz-i\omega t} \end{cases}

 \quad\quad\text{and}\quad\quad
  \begin{cases}
    \displaystyle H_z = H_0 \cos\left(\frac{\pi x}{a}\right) e^{ikz-i\omega t} \\
    \displaystyle H_x = -i\frac{ka}{\pi} H_0 \sin\left(\frac{\pi x}{a}\right) e^{ikz-i\omega t} \\
    \displaystyle E_y =i\frac{\mu\omega a}{\pi} H_0 \sin\left(\frac{\pi x}{a}\right) e^{ikz-i\omega t}
  \end{cases}

\end{align}

Discontinuities and networks

Discontinuity in a parallel-plate waveguide
See [1], section 4.6.1.
  • Solution for the TE mode

\begin{align} H_z &= H_0 e^{-jk_0 x} + R H_0 e^{jk_0 x} && \text{at } x=x_1 \\ H_z &= T H_0 e^{-jk_0 x} && \text{at } x=x_2 \end{align}

  • Boundary conditions

\begin{align} \partial_x H_z &= jk_0 H_z - 2jk_0H_0 e^{-jk_0 x} && \text{at } x=x_1 \\ \partial_x H_z &= -jk_0 H_z && \text{at } x=x_2 \end{align}

  • Reflection and transmission coefficients

\begin{align} R &= \left.\frac{H_z - H_0 e^{-jk_0x}}{H_0 e^{ jk_0 x}}\right|_{x=x_1} \\ T &= \left.\frac{H_z}{H_0 e^{-jk_0 x}}\right|_{x=x_2} \end{align}

with $|R|^2+|T|^2=1$.
Waveguide with discontinuities
See [1], section 8.5.
  • Solution for the TE$_{mn}$ mode

\begin{align} {\bf E}(x,y,z) &= E_0 {\bf e}_{mn}(x,y) e^{-jk_{z_{mn}} z} + R E_0 {\bf e}_{mn}(x,y) e^{jk_{z_{mn}} z} && \text{at } z=z_1 \\ {\bf E}(x,y,z) &= T E_0 {\bf e}_{mn}(x,y) e^{-jk_{z_{mn}} z} && \text{at } z=z_2 \end{align}

  • Reflection and transmission coefficients

\begin{align} R &= \left.\frac{{\bf E}(x,y,z) - E_0 {\bf e}_{mn}(x,y) e^{-jk_{z_{10}}z}}{E_0 {\bf e}_{mn}(x,y) e^{jk_{z_{10}}z}}\right|_{z=z_1} \\ T &= \left.\frac{{\bf E}(x,y,z)}{E_0 {\bf e}_{mn}(x,y) e^{-jk_{z_{10}}z}}\right|_{z=z_2} \end{align}

with $|R|^2+|T|^2=1$.
  • Reflection and transmission coefficients (improved - the dominant mode $mn$ - using the orthogonality properties of modes)

\begin{align} R &= \frac{e^{-jk_{z_{mn}}z_1}}{E_0} \frac{\int_{S_1}{\bf E}(x,y,z)\cdot{\bf e}_{mn}(x,y) \: dS}{\int_{S_1}{\bf e}_{mn}(x,y)\cdot{\bf e}_{mn}(x,y) \: dS} - e^{-2jk_{z_{mn}}z_1}\\ T &= \frac{e^{jk_{z_{mn}}z_2}}{E_0} \frac{\int_{S_2}{\bf E}(x,y,z)\cdot{\bf e}_{mn}(x,y) \: dS}{\int_{S_2}{\bf e}_{mn}(x,y)\cdot{\bf e}_{mn}(x,y) \: dS} \end{align}

with $|R|^2+|T|^2=1$.

Numerical resolution

Some results

Here are some snapshots.

References

  1. 1.0 1.1 J. Jin, The Finite Element Method in Electromagnetics. Second edition. John Wiley & Sons, 2002


Model developed by A. Modave, B. Klein and C. Geuzaine