[Gmsh] Node label : some more ...
Philippe Ackerer
ackerer at unistra.fr
Tue Feb 18 11:37:50 CET 2014
Some more information about my previous mail.
The triangular element of surface 101 (element 1) has the connectivity
matrix 13 20 1 (attached cols.geo)
The problem I have is that I do not find these nodes (13 20 1) in the
connectivity of my prisms....
I tried another example by defining only one surface and using:
(attached col0.geo)
out1[]=Extrude {0,0,h} {Surface{31}; Layers{ {3}, {1.00} };Recombine; };
instead of have two surfaces (31 & 32) and :
out1[]=Extrude {0,0,h} {Surface{31,32}; Layers{ {3}, {1.00} };Recombine; };
The example with one surface in the extrude command is ok, not the other
one ...
Thanks for your help,
Philippe
--------------------------------------------------------------
Philippe ACKERER
LHyGeS UMR 7517 UdS-CNRS-Engees
1, rue Blessig
67000 STRASBOURG
tel +33 (0)368 850 561
-------------------------------------------------------------
Le 18/02/2014 10:34, Philippe Ackerer a écrit :
> Dear all,
> Some troubles between node numbers in the screen
> (Tools->Option->Visibility->Mesh->Node Labels) and the node numbers in
> the .msh file.
> I attached the .geo file.
>
> On the screen, watch node number 41 (close to node 1). In the .msh
> file, it seems to be node number 39.
>
> Could you tell me what I did wrong ?
> Thanks
>
> Best regards
> Philippe
>
-------------- next part --------------
// As usual, we start by defining some variables:
r1=1.0;
r2=19.0;
Lcw=0.50;
Lc1 = 5.0;
Lc2 = 5.0;
dteta=2.0*3.14159/8.0;
teta=dteta;
// Then we define some points and some lines using these variables:
Point(1) = { 0.0, 0.0 , 0.0 , Lcw};
Point(2) = { r1, 0.0 , 0.0 , Lc1};
//Point(3) = { r2 , 0.0 , 0.0 , Lc2};
x1=r2*Cos(teta);
y1=r2*Sin(teta);
// Point(4) = { x1 , y1 , 0.0 , Lc2};
x1=r1*Cos(teta);
y1=r1*Sin(teta);
Point(5) = { x1 , y1 , 0.0 , Lc1};
// Circle(1) = {2,1,5}; starting point: 2, ending point: 5, center: 1.
Circle(1) = {2,1,5};
//Circle(2) = {3,1,4};
Line(10) = {1,2};
//Line(11) = {2,3};
//Line(12) = {4,5};
Line(13) = {5,1};
Line Loop(21) = {10,1,13}; Plane Surface(31) = {21};
// Line Loop(22) = {11,2,12,-1}; Plane Surface(32) = {22};
//Extrusion de la surface sur une distance h
h = 3.0;
out1[]=Extrude {0,0,h} {Surface{31}; Layers{ {3}, {1.00} };Recombine; };
Printf(" Top surface=%g", out1[0]);
Printf(" New volume=%g", out1[1]);
Printf(" Lateral surface=%g", out1[2]);
Printf(" Lateral surface=%g", out1[3]);
Printf(" Lateral surface=%g", out1[4]);
Physical Surface(101) = {31};
Physical Surface(102) = {out1[0]};
Physical Volume(500) = {out1[1]};
-------------- next part --------------
// As usual, we start by defining some variables:
r1=1.0;
r2=19.0;
Lcw=0.50;
Lc1 = 5.0;
Lc2 = 5.0;
dteta=2.0*3.14159/8.0;
teta=dteta;
// Then we define some points and some lines using these variables:
Point(1) = { 0.0, 0.0 , 0.0 , Lcw};
Point(2) = { r1, 0.0 , 0.0 , Lc1};
Point(3) = { r2 , 0.0 , 0.0 , Lc2};
x1=r2*Cos(teta);
y1=r2*Sin(teta);
Point(4) = { x1 , y1 , 0.0 , Lc2};
x1=r1*Cos(teta);
y1=r1*Sin(teta);
Point(5) = { x1 , y1 , 0.0 , Lc1};
// Circle(1) = {2,1,5}; starting point: 2, ending point: 5, center: 1.
Circle(1) = {2,1,5};
Circle(2) = {3,1,4};
Line(10) = {1,2};
Line(11) = {2,3};
Line(12) = {4,5};
Line(13) = {5,1};
Line Loop(21) = {10,1,13}; Plane Surface(31) = {21};
Line Loop(22) = {11,2,12,-1}; Plane Surface(32) = {22};
//Extrusion de la surface sur une distance h
h = 3.0;
out1[]=Extrude {0,0,h} {Surface{31,32}; Layers{ {3}, {1.00} };Recombine; };
Printf(" Top surface=%g", out1[0]);
Printf(" New volume=%g", out1[1]);
Printf(" Lateral surface=%g", out1[2]);
Printf(" Lateral surface=%g", out1[3]);
Printf(" Lateral surface=%g", out1[4]);
Printf(" Top surface=%g", out1[5]);
Printf(" New volume=%g", out1[6]);
Printf(" Lateral surface=%g", out1[7]);
Printf(" Lateral surface=%g", out1[8]);
Printf(" Lateral surface=%g", out1[9]);
Printf(" Lateral surface=%g", out1[10]);
Physical Surface(101) = {31};
Physical Surface(102) = {out1[0]};
Physical Volume(500) = {out1[1], out1[6]};