[Gmsh] No tetrahedra in region 10 problem

Kamil ÖZDEN kamil.ozden.me at gmail.com
Mon Jul 14 13:28:25 CEST 2014


Dear All,

I'm trying to generate a constricted pipe geometry and mesh via Gmsh. It 
works fine with 1D and 2D meshes but when say to mesh in 3D with the 
Delaunay algortihm it gives such an error:



I'm sending the .geo file in the attachment. What can be the problem?

Regards,
Kamil
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.geuz.org/pipermail/gmsh/attachments/20140714/4a0c496d/attachment.html>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: cgbhaijb.png
Type: image/png
Size: 39022 bytes
Desc: not available
URL: <http://www.geuz.org/pipermail/gmsh/attachments/20140714/4a0c496d/attachment.png>
-------------- next part --------------
cl__1 = 1;
Point(1) = {0, 0, 0, 1};
Point(2) = {3.2, 0, 0, 1};
Point(3) = {-3.2, 0, 0, 1};
Point(4) = {0, 3.2, 0, 1};
Point(5) = {0, -3.2, 0, 1};
Point(6) = {0, -3.2, -37.3, 1};
Point(7) = {0, 0, -37.3, 1};
Point(8) = {3.2, 0, -37.3, 1};
Point(13) = {0, 3.2, -37.3, 1};
Point(18) = {-3.2, 0, -37.3, 1};
Point(19) = {1.15, 0, -37.3, 1};
Point(20) = {-1.15, 0, -37.3, 1};
Point(21) = {0, 1.15, -37.3, 1};
Point(22) = {0, -1.15, -37.3, 1};
Point(23) = {0, -1.15, -50, 1};
Point(24) = {0, 0, -50, 1};
Point(25) = {1.15, 0, -50, 1};
Point(30) = {0, 1.15, -50, 1};
Point(35) = {-1.15, 0, -50, 1};
Point(36) = {0, -3.2, -50, 1};
Point(37) = {3.2, 0, -50, 1};
Point(38) = {0, 3.2, -50, 1};
Point(39) = {-3.2, 0, -50, 1};
Point(40) = {3.2, 0, -150, 1};
Point(41) = {0, 0, -150, 1};
Point(42) = {0, 3.2, -150, 1};
Point(47) = {-3.2, 0, -150, 1};
Point(52) = {0, -3.2, -150, 1};
Circle(1) = {5, 1, 2};
Transfinite Line {1} = 3Using Progression 1;
Circle(2) = {2, 1, 4};
Transfinite Line {2} = 3Using Progression 1;
Circle(3) = {4, 1, 3};
Transfinite Line {3} = 3Using Progression 1;
Circle(4) = {3, 1, 5};
Transfinite Line {4} = 3Using Progression 1;
Circle(8) = {6, 7, 8};
Transfinite Line {8} = 3Using Progression 1;
Circle(9) = {8, 7, 13};
Transfinite Line {9} = 3Using Progression 1;
Circle(10) = {13, 7, 18};
Transfinite Line {10} = 3Using Progression 1;
Circle(11) = {18, 7, 6};
Transfinite Line {11} = 3Using Progression 1;
Line(13) = {5, 6};
Transfinite Line {13} = 3Using Progression 1;
Line(14) = {2, 8};
Transfinite Line {14} = 3Using Progression 1;
Line(18) = {4, 13};
Transfinite Line {18} = 3Using Progression 1;
Line(22) = {3, 18};
Transfinite Line {22} = 3Using Progression 1;
Circle(29) = {22, 7, 19};
Transfinite Line {29} = 3Using Progression 1;
Circle(30) = {19, 7, 21};
Transfinite Line {30} = 3Using Progression 1;
Circle(31) = {21, 7, 20};
Transfinite Line {31} = 3Using Progression 1;
Circle(32) = {20, 7, 22};
Transfinite Line {32} = 3Using Progression 1;
Circle(34) = {23, 24, 25};
Transfinite Line {34} = 3Using Progression 1;
Circle(35) = {25, 24, 30};
Transfinite Line {35} = 3Using Progression 1;
Circle(36) = {30, 24, 35};
Transfinite Line {36} = 3Using Progression 1;
Circle(37) = {35, 24, 23};
Transfinite Line {37} = 3Using Progression 1;
Line(39) = {22, 23};
Transfinite Line {39} = 3Using Progression 1;
Line(40) = {19, 25};
Transfinite Line {40} = 3Using Progression 1;
Line(44) = {21, 30};
Transfinite Line {44} = 3Using Progression 1;
Line(48) = {20, 35};
Transfinite Line {48} = 3Using Progression 1;
Circle(55) = {37, 24, 36};
Transfinite Line {55} = 3Using Progression 1;
Circle(56) = {37, 24, 38};
Transfinite Line {56} = 3Using Progression 1;
Circle(57) = {38, 24, 39};
Transfinite Line {57} = 3Using Progression 1;
Circle(58) = {39, 24, 36};
Transfinite Line {58} = 3Using Progression 1;
Circle(64) = {40, 41, 42};
Transfinite Line {64} = 3Using Progression 1;
Circle(65) = {42, 41, 47};
Transfinite Line {65} = 3Using Progression 1;
Circle(66) = {47, 41, 52};
Transfinite Line {66} = 3Using Progression 1;
Circle(67) = {52, 41, 40};
Transfinite Line {67} = 3Using Progression 1;
Line(69) = {37, 40};
Transfinite Line {69} = 3Using Progression 1;
Line(70) = {38, 42};
Transfinite Line {70} = 3Using Progression 1;
Line(74) = {39, 47};
Transfinite Line {74} = 3Using Progression 1;
Line(78) = {36, 52};
Transfinite Line {78} = 3Using Progression 1;
Line Loop(6) = {1, 2, 3, 4};
Plane Surface(6) = {6};
Line Loop(15) = {1, 14, -8, -13};
Ruled Surface(15) = {15};
Line Loop(19) = {2, 18, -9, -14};
Ruled Surface(19) = {19};
Line Loop(23) = {3, 22, -10, -18};
Ruled Surface(23) = {23};
Line Loop(27) = {4, 13, -11, -22};
Ruled Surface(27) = {27};
Line Loop(41) = {29, 40, -34, -39};
Ruled Surface(41) = {41};
Line Loop(45) = {30, 44, -35, -40};
Ruled Surface(45) = {45};
Line Loop(49) = {31, 48, -36, -44};
Ruled Surface(49) = {49};
Line Loop(53) = {32, 39, -37, -48};
Ruled Surface(53) = {53};
//Line Loop(60) = {55};
//Plane Surface(60) = {60};
Line Loop(71) = {56, 70, -64, -69};
Ruled Surface(71) = {71};
Line Loop(75) = {57, 74, -65, -70};
Ruled Surface(75) = {75};
Line Loop(79) = {58, 78, -66, -74};
Ruled Surface(79) = {79};
Line Loop(83) = {-55, 69, -67, -78};
Ruled Surface(83) = {83};
Line Loop(84) = {64, 65, 66, 67};
Plane Surface(84) = {84};
Line Loop(85) = {8, 9, 10, 11, -32, -31, -30, -29};
Plane Surface(85) = {85};
Line Loop(86) = {34, 35, 36, 37, 55, -58, -57, -56};
Plane Surface(86) = {86};
Surface Loop(1) = {6, 15, 19, 23, 27, 85, 41, 45, 49, 53, 86, 71, 75, 79, 83};
Volume(1) = {1};