[Gmsh] Parabola
Michel Cassagnes
michel.cassagnes at noos.fr
Thu Apr 5 16:41:16 CEST 2018
Hello,
you can try Bezier curve :
Lc = 0.025;
R = 0.5;
H = 0.1;
Point (1) = {0, 0, 0, Lc};
Point (2) = {R, 0, H, Lc};
Point (3) = {R/2, 0, 0};
Bezier (1) = {1,3,2,2};
Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {
Line{1};
}
Regards,
Michel Cassagnes
2018-04-04 22:59 GMT+02:00 Raavi M. Mohindar Rao <
raavi.mohindar.rao at gmail.com>:
> D = 10.0*0.0999308;
> f2d = 0.72;
> f = D*f2d;
>
> h = 0.05;
>
> parabolLowerEdgeHeight = -D/2;
> parabolPoints = 101;
> delta = D/(parabolPoints-1);
>
> For i In {0:parabolPoints-1}
>
> x = (i*delta)+parabolLowerEdgeHeight;
> z = (x*x)/(4.0*f);
> pList[i] = newp;
> Point(pList[i]) = {x, 0, z, h};
>
> EndFor
>
> Line (newl) = pList[];
>
> line1[] = Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {Line{pList[]};};
>
> line2[] = Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {Line{line1[]};};
>
>
> I am stuck here. I looking forward to get a physical surface for
> discretization.
>
> Regards,
>
> Rao.
>
> _______________________________________________
> gmsh mailing list
> gmsh at onelab.info
> http://onelab.info/mailman/listinfo/gmsh
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://onelab.info/pipermail/gmsh/attachments/20180405/14343dcc/attachment-0001.html>
More information about the gmsh
mailing list