
Gmsh, GetDP & ONELAB

C. Geuzaine

Université de Liège

March 23, 2022

1

Some background

An overview of Gmsh
Introduction
Geometry module
Mesh module
Solver module
Post-processing module
Recent developments

An overview of GetDP
Introduction
The 10 GetDP objects
Recent developments

Tying it all together with ONELAB

Conclusions and perspectives

Some background

• I am a professor at the University of Liège in Belgium, where I lead a team
of about 15 people in the Montefiore Institute (EECS Dept.), at the
intersection of applied math, scientific computing and engineering physics

• Our research interests include modeling, analysis, algorithm development,
and simulation for problems arising in various areas of engineering and
science

• Current applications: low- and high-frequency electromagnetics, geophysics,
biomedical problems

• We write quite a lot of codes, some released as open source software:
https://gmsh.info, https://getdp.info, https://onelab.info

3

https://gmsh.info
https://getdp.info
https://onelab.info

Gmsh, GetDP & ONELAB

• Gmsh (https://gmsh.info) is a 3D finite element mesh generator with a
built-in CAD engine and post-processor
• Joint work with J.-F. Remacle at UCLouvain, with important contributions

from J. Lambrechts, K. Hillewaert, M. Pellikka, A. Johnen, H. Si, A. Royer,
C. Marot, I. Badia, T. Toulorge, M. Reberol, ...

• GetDP (https://getdp.info) is a general finite element solver using
mixed finite elements
• Joint work with P. Dular at ULiège, with important contributions from J.

Gyselinck, R. Sabariego, M. Asam, B. Thierry, K. Jacques, F. Henrotte, G.
Demésy, ...

• ONELAB (https://onelab.info) is an abstract interface for sharing
information between codes

4

https://gmsh.info
https://getdp.info
https://onelab.info

Some numbers

Today, Gmsh, GetDP and ONELAB represent about 500k lines of C++ code
• still only 3 core developers; about 100 with ≥ 1 commit
• about 1,300 registered users on the development site

https://gitlab.onelab.info
• about 20,000 downloads per month (70% Windows)
• about 800 citations per year – the Gmsh paper is cited about 5000 times
• Gmsh has probably become one of the most popular (open source) finite

element mesh generators?

5

https://gitlab.onelab.info

Short demo

Download the ONELAB software bundle from https://onelab.info
Open models/Superconductors/helix.pro with Gmsh

6

https://onelab.info
https://gitlab.onelab.info/doc/models/-/wikis/Superconductors

An overview of Gmsh

7

What is Gmsh?

• Gmsh (https://gmsh.info) is a 3D finite element mesh generator with a
built-in CAD engine and post-processor

• Open source (GNU GPL v2+)
• Includes a graphical user interface (GUI)
• Can be used as a standalone software or as a library (C++, C, Python or

Julia)
• Can drive any simulation code interactively through ONELAB

8

https://gmsh.info

∼ 20 years of Gmsh development in 1 minute
A warm thank you to all the contributors!

https://gmsh.info/doc/gource_faster.mp4
https://gmsh.info/CREDITS.txt

Gmsh - A little bit of history
• Gmsh was started in 1996, as a side project
• 1998: First public release
• 2003: Open sourced under GNU GPL
• 2006: OpenCASCADE integration (Gmsh 2)
• 2009: IJNME paper and switch to CMake
• 2012: Curvilinear meshing and quad meshing
• 2013: Homology and ONELAB solver interface
• 2015: Multi-threaded 1D and 2D meshing (coarse-grained)
• 2017: Boolean operations and switch to Git (Gmsh 3)
• 2018: C++, C, Python and Julia API (Gmsh 4)
• 2019: Multi-threaded 3D meshing (fine-grained), robust STL remeshing
• 2021: GmshFEM, Quasi-structured quad meshing

10

Gmsh - Strategic choices

• Design goals: fast, light and user-friendly
• Written in simple C++
• GUIs: FLTK (desktop), UIKit (iOS), Android
• OpenGL graphics
• Highly portable (OSes & compilers)
• Easy to distribute & install: zero dependencies on installation

• Handling of numerous third party libraries
• Build system based on CMake – everything is optional
• Some libs integrated and redistributed directly in gmsh/contrib (HXT,

BAMG, Metis, Concorde, ...)
• Funding

• Hobby until 2006, then industry, Wallonia, Belgium & EU

11

Gmsh - Strategic choices

• Community infrastructure
• Our own (using GitLab) to enable public/private parts

(https://gitlab.onelab.info/gmsh/gmsh)
• Continuous integration and delivery (CI/CD) of Gmsh app and Gmsh SDK

on Windows, Linux and macOS
• Web site (https://gmsh.info) with documentation, tutorials, etc.
• Scientific aspects of algorithms detailed in journal papers

• Licensing
• Gmsh is distributed under the GNU General Public License v2 or later, with

exceptions to allow for easier linking with external libraries
• We double-license to enable embedding in commercial codes

12

https://gitlab.onelab.info/gmsh/gmsh
https://gmsh.info

Gmsh - Basic concepts

• Gmsh is based around four modules: Geometry, Mesh, Solver and
Post-processing

• Gmsh can be used at 3 levels
• Through the GUI
• Through the dedicated .geo language
• Through the C++, C, Python and Julia API

• Main characteristics
• All algorithms are written in terms of abstract model entities, using a

Boundary REPresentation (BREP) approach
• Gmsh never translates from one CAD format to another; it directly accesses

each CAD kernel API (OpenCASCADE, Built-in, ...)

13

Gmsh - Basic concepts
The goal is to deal with very different underlying data representations in a

transparent manner

14

Gmsh - Geometry module

Under the hood, 4 types of model entities are defined:
1. Model points G0

i that are topological entities of dimension 0
2. Model curves G1

i that are topological entities of dimension 1
3. Model surfaces G2

i that are topological entities of dimension 2
4. Model volumes G3

i that are topological entities of dimension 3

15

Gmsh - Geometry module

• Model entities are topological entities, i.e., they only deal with adjacencies in
the model; a bi-directional data structure represents the graph of adjacencies

G0
i
 G1

i
 G2
i
 G3

i

• Any model is able to build its list of adjacencies of any dimension using local
operations

• The BRep is extended with non-manifold features: adjacent entities, and
embedded (internal) entities

• Model entities can be either CAD entities (e.g. from the built-in or
OpenCASCADE kernel) or discrete entities (defined by a mesh, e.g. STL)

16

Gmsh - Geometry module
The geometry of a CAD model entity depends on the solid modeler kernel for its
underlying representation. Solid modelers usually provide a parametrization of
the shapes, i.e., a mapping:

p ∈ Rd 7→ x ∈ R3

1. The geometry of a model point G0
i is simply its 3-D location xi = (xi, yi, zi)

2. The geometry of a model curve G1
i is its underlying curve Ci with its

parametrization p(t) ∈ Ci, t ∈ [t1, t2]
3. The geometry of a model surface G2

i is its underlying surface Si with its
parametrization p(u, v) ∈ Si

4. The geometry associated to a model volume is R3

17

Gmsh - Geometry module

Point p located on a curve C that is itself embedded in a surface S

18

Gmsh - Geometry module
Operations on CAD model entities are performed directly within their respective
CAD kernels:
• There is no common internal geometrical representation
• Rather, Gmsh directly performs the operations (translation, rotation,

intersection, union, fragments, ...) on the native geometrical representation
using each CAD kernel’s own API

19

Gmsh - Geometry module
Discrete model entities are defined by a mesh (e.g. STL):
• They can be equipped with a geometry through a reparametrization

procedure
• The parametrization is then used for meshing, in exactly the same way as for

CAD entities

20

Gmsh - Mesh module

• Gmsh implements several meshing algorithms with specific characteristics
• 1D, 2D and 3D
• Structured, unstructured and hybrid
• Isotropic and anisotropic
• Straight-sided and curved
• From standard CAD data or from STL through reparametrization

• Built-in interfaces to external mesh generators (BAMG, MMG3D, Netgen)

21

Gmsh - Mesh module

Typical CAD kernel idiosyncrasies: seam edges and degenerated edges

22

Gmsh - Mesh module
• Mesh data is made of elements (points, lines, triangles, quadrangles,

tetrahedra, hexahedra, ...) defined by an ordered list of their nodes
• Elements and nodes are stored (classified) in the model entity they

discretize:
• A model point will thus contain a mesh element of type point, as well as a

mesh node
• A model curve will contain line elements as well as its interior nodes, while

its boundary nodes will be stored in the bounding model points
• A model surface will contain triangular and/or quadrangular elements and all

the nodes not classified on its boundary or on its embedded entities (curves
and points)

• A model volume will contain tetrahedra, hexahedra, etc. and all the nodes
not classified on its boundary or on its embedded entities (surfaces, curves
and points)

23

Gmsh - Mesh module

This mesh data structure allows to easily
and efficiently handle the creation,
modification and destruction of
conformal finite element meshes

24

Gmsh - Solver module

• Gmsh implements a ONELAB (https://onelab.info) server to pilot
external solvers, called “clients”

• Example client: GetDP finite element solver (https://getdp.info)

• The ONELAB interface
allows to call such clients
and have them share
parameters and modeling
information

• Parameters are directly
controllable from the
GUI

25

https://onelab.info
https://getdp.info

Gmsh - Solver module

• The implementation is based on a client-server model, with a server-side
database and local or remote clients communicating in-memory or through
TCP/IP sockets
• Contrary to most solver interfaces, the ONELAB server has no a priori

knowledge about any specifics (input file format, syntax, ...) of the clients
• This is made possible by having any simulation preceded by an analysis

phase, during which the clients are asked to upload their parameter set to
the server

• The issues of completeness and consistency of the parameter sets are
completely dealt with on the client side: the role of ONELAB is limited to
data centralization, modification and re-dispatching

26

Gmsh - Post-processing module

• Post-processing data is made of views
• A view stores both display options and data (unless the view is an alias of

another view)
• View data can contain several steps (e.g. to store time series) and can be

either linked to one or more models (mesh-based data, as stored in .msh or
.med files) or independent from any model (list-based data, as stored in
parsed .pos files)

• Data is interpolated through arbitrary polynomial interpolation schemes;
automatic mesh refinement is used for adaptive visualization of high-order
views

• Various plugins exist to create and modify views

27

Gmsh - Post-processing module
• Cuts, iso-curves and vectors
• Elevation maps
• Streamlines
• Adaptive high-order visualization

28

Gmsh - Recent developments

• Constructive Solid Geometry
• Application Programming Interface (API)
• Multi-threaded meshing
• Robust STL remeshing based on parametrizations
• Quasi-structured quad meshing

29

Gmsh - Constructive Solid Geometry

https://en.wikipedia.org/wiki/Constructive_solid_geometry

30

https://en.wikipedia.org/wiki/Constructive_solid_geometry

Gmsh - Constructive Solid Geometry
SetFactory (" OpenCASCADE "); // use OpenCASCADE kernel

R = DefineNumber [1.4 , Min 0.1, Max 2, Step 0.01 ,
Name " Parameters /Box dimension "];

Rs = DefineNumber [R*.7 , Min 0.1, Max 2, Step 0.01 ,
Name " Parameters / Cylinder radius "];

Rt = DefineNumber [R*1.25 , Min 0.1, Max 2, Step 0.01 ,
Name " Parameters / Sphere radius "];

Box (1) = {-R,-R,-R, 2*R ,2*R ,2*R}; // explicit entity tag

Sphere (2) = {0,0,0, Rt};

BooleanIntersection (3) = { Volume {1}; Delete ; }{ Volume {2}; Delete ; };
// delete object and tool

Cylinder (4) = {-2*R,0,0, 4*R,0,0, Rs};
Cylinder (5) = {0,-2*R,0, 0,4*R,0, Rs};
Cylinder (6) = {0,0,-2*R, 0,0,4*R, Rs};

BooleanUnion (7) = { Volume {4}; Delete ; }{ Volume {5 ,6}; Delete ; };
BooleanDifference (8) = { Volume {3}; Delete ; }{ Volume {7}; Delete ; };

31

Gmsh - Constructive Solid Geometry

examples/boolean/boolean.geo

32

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/boolean/boolean.geo

Gmsh - Constructive Solid Geometry
SetFactory (" OpenCASCADE ");

DefineConstant [
z = {16, Name " Parameters /z position of box"}
sph = {0, Choices {0,1}, Name " Parameters /Add sphere ?"}

];

a() = ShapeFromFile (" component8 .step"); // import STEP shape
b() = 2;
Box(b(0)) = {0 ,156 ,z, 10 ,170 ,z+10};

If(sph)
b() += 3;
Sphere (b(1)) = {0 ,150 ,0 , 20};

EndIf

// fragmentation intersects everything
r() = BooleanFragments { Volume {a()}; Delete ; }{ Volume {b()}; Delete ; };
Save " merged .brep"; // save into native OpenCASCADE format

Physical Volume (" Combined volume ", 1) = {r()};
Physical Surface (" Combined boundary ", 2) = CombinedBoundary { Volume {r()}; }

33

Gmsh - Constructive Solid Geometry

examples/boolean/import.geo

34

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/boolean/import.geo

Gmsh - API

Gmsh 4 introduces a new stable Application Programming Interface (API) for
C++, C, Python and Julia, with the following design goals:
• Allow to do everything that can be done in .geo files

• ... and then much more!
• Be robust, in particular to wrong input data (i.e. “never crash”)
• Be efficient; but still allow to do simple things, simply
• Be maintainable over the long run

35

Gmsh - API

To achieve these goals the Gmsh API
• is purely functional
• only uses basic types from the target language (C++, C, Python or Julia)
• is automatically generated from a master API description file
• is fully documented

36

Gmsh - API
Same boolean example as before, but using the Python API:

import gmsh

gmsh. initialize ()
gmsh.model.add(" boolean ")

R = 1.4; Rs = R*.7; Rt = R*1.25

gmsh.model.occ. addBox (-R,-R,-R, 2*R ,2*R ,2*R, 1)
gmsh.model.occ. addSphere (0,0,0,Rt , 2)
gmsh.model.occ. intersect ([(3 , 1)] , [(3, 2)] , 3)
gmsh.model.occ. addCylinder (-2*R,0,0, 4*R,0,0, Rs , 4)
gmsh.model.occ. addCylinder (0,-2*R,0, 0,4*R,0, Rs , 5)
gmsh.model.occ. addCylinder (0,0, -2*R, 0,0,4*R, Rs , 6)
gmsh.model.occ.fuse ([(3 , 4), (3, 5)], [(3 , 6)] , 7)
gmsh.model.occ.cut ([(3 , 3)], [(3 , 7)], 8)

gmsh.model.occ. synchronize ()
gmsh.model.mesh. generate (3)
gmsh.fltk.run ()
gmsh. finalize ()

examples/api/boolean.py

37

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/boolean.py

Gmsh - API
... or using the C++ API:

include <gmsh.h>

int main(int argc , char ** argv)
{

gmsh :: initialize (argc , argv);
gmsh :: model :: add(" boolean ");

double R = 1.4, Rs = R*.7, Rt = R *1.25;

std :: vector <std ::pair <int , int > > ov;
std :: vector <std :: vector <std ::pair <int , int > > > ovv;
gmsh :: model :: occ :: addBox (-R,-R,-R, 2*R ,2*R ,2*R, 1);
gmsh :: model :: occ :: addSphere (0,0,0,Rt , 2);
gmsh :: model :: occ :: intersect ({{3 , 1}} , {{3 , 2}}, ov , ovv , 3);
gmsh :: model :: occ :: addCylinder (-2*R,0,0, 4*R,0,0, Rs , 4);
gmsh :: model :: occ :: addCylinder (0 , -2*R,0, 0 ,4*R,0, Rs , 5);
gmsh :: model :: occ :: addCylinder (0 ,0,-2*R, 0 ,0,4*R, Rs , 6);
gmsh :: model :: occ :: fuse ({{3 , 4}, {3, 5}}, {{3 , 6}} , ov , ovv , 7);
gmsh :: model :: occ :: cut ({{3 , 3}}, {{3 , 7}}, ov , ovv , 8);

gmsh :: model :: occ :: synchronize ();

gmsh :: model :: mesh :: generate (3);
gmsh :: fltk :: run ();
gmsh :: finalize ();
return 0;

}

examples/api/boolean.cpp

38

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/boolean.cpp

Gmsh - API

In addition to CAD creation and meshing, the API can be used to
• Access mesh data (getNodes, getElements)
• Generate interpolation (getBasisFunctions) and integration

(getJacobians) data to build Finite Element and related solvers (see e.g.
examples/api/poisson.py)

• Create post-processing views
• Run the graphical user-interface
• Build custom graphical user-interfaces, e.g. for domain-specific codes (see

examples/api/prepro.py or examples/api/custom gui.py) or
co-post-processing via ONELAB

39

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/poisson.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/prepro.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/custom_gui.py

Gmsh - API
In order to make this API easy to use, we publish a binary Software Development
Toolkit (SDK):
• Continuously delivered (for each commit in master), like the Gmsh app
• Contains the dynamic Gmsh library together with the corresponding C++/C

header files, and Python and Julia modules

40

Gmsh - Multi-threaded meshing

Most meshing algorithms are now multi-threaded using OpenMP:
• 1D and 2D algorithms are multithreaded using coarse-grained approach, i.e.

several curves/surfaces are meshed concurrently
• The new 3D Delaunay-based algorithm is multi-threaded using a fine-grained

approach. It currently lacks several features (embedded entities, hybrid
meshes, ...), which will eventually be supported

You need to recompile Gmsh with -DENABLE OPENMP=1 to enable this; then e.g.
gmsh file.geo -3 -nt 8 -algo hxt

41

Gmsh - Multi-threaded meshing

[C. Marot et al., IJNME 2019]
42

Gmsh - Multi-threaded meshing

AMD EPYC 2x 64-core
43

Gmsh - Multi-threaded meshing

AMD EPYC 2x 64-core

44

Gmsh - Robust STL remeshing

New pipeline to remesh discrete surfaces (represented by triangulations):
• Automatic construction of a set of parametrizations that form an atlas of

the model
• Each parametrization is guaranteed to be one-to-one, amenable to meshing

using existing algorithms
• New nodes are guaranteed to be on the input triangulation (“no modelling”)
• Optional pre-processing (i.e. edge detection) to color sub-patches if sharp

features need to be preserved

[P. A. Beaufort et al., JCP 2020]

45

Gmsh - Robust STL remeshing

Batman STL mesh

46

Gmsh - Robust STL remeshing

Automatic atlas creation: each patch is provably parametrizable by solving a
linear PDE, using mean value coordinates

47

Gmsh - Robust STL remeshing

Remeshing

48

Gmsh - Robust STL remeshing

Automatic atlas creation, this time with feature edge detection

49

Gmsh - Robust STL remeshing

Remeshing with feature edge detection

50

Gmsh - Robust STL remeshing

CT scan of an artery: 101 patches created, most because of the large aspect ratio

51

Gmsh - Robust STL remeshing

Remeshing of a skull: 715 patches created for reparametrization; mesh adapted
to curvature

52

Gmsh - Robust STL remeshing

Remeshing of an X-ray tomography image of a silicon carbide foam by P. Duru,
F. Muller and L. Selle (IMFT, ERC Advanced Grant SCIROCCO): 1,802 patches

created for reparametrization

53

Gmsh - Quasi-structured quad meshing
New experimental algorithm by [M. Reberol et al. 2021] that has just landed in

the development version

Compute a (scaled) cross-field with multilevel diffusion

54

Gmsh - Quasi-structured quad meshing

Build a unstructured quadrilateral mesh with a frontal approach guided by the
scaled cross field

55

Gmsh - Quasi-structured quad meshing

Pattern-based quadrilateral meshing and cavity remeshing to eliminate
unnecessary irregular vertices while preserving the cross field singularities

56

Gmsh - Quasi-structured quad meshing

The final quad mesh is very similar to the one obtained with the global
parametrization approach and has the same number of irregular vertices

57

Gmsh - Quasi-structured quad meshing

• “Block” model: 533 surfaces,
1584 curves, 261.5k vertices,
261.6k quads

• Average SICN quality: 0.87
(minimum: 0.11)

• 58 sec. (initial unstructured
quad mesh) + 33 sec.
(quasi-structured improvement)
on Intel Core i7 4 cores

• Quasi-structured improvement
reduces the number of irregular
from 14.4k to 3.6k

58

An overview of GetDP

59

What is GetDP?

• GetDP (https://getdp.info) is a flexible finite element solver using
mixed elements

• Open source (GNU GPL v2+); same community infrastructure as Gmsh
• Main feature: closeness between

• the input data defining discrete problems (written in plain text .pro files),
and

• the symbolic mathematical expressions of these problems
• New models developed through .pro files — no compilation
• Highly portable: exact same .pro files on iPhone and 10,000 core

supercomputer

60

https://getdp.info

GetDP - A little bit of history
• GetDP was started at the end of 1996
• 1998: First feature-complete release, binary-only; original paper
• 2002: Socket-based communication with Gmsh
• 2004: Open sourced under GNU GPL
• 2010: Major refactoring and move to C++ (GetDP 2)
• 2011: New default solvers based on PETSc and SLEPc
• 2012: ONELAB interface
• 2014: Parallel domain decomposition methods (GetDDM)
• 2015: Macros, run-time variables, Python and Octave interpreters
• 2017: Polynomial and rational nonlinear eigenvalue problems
• 2018: Curved meshes and enhanced Gmsh support (GetDP 3)
• 2020: Auto-similar trees of edges

61

GetDP - Basic concepts
In a .pro file, the weak formulation: Find u(x) ∈ H1

0 (Ω) such that

−
∫

Ω
a(x)∇u · ∇u′ dΩ =

∫
Ω
f(x)u′ dΩ, ∀u′ ∈ H1

0 (Ω)

is transcribed as

Formulation {
{ Name MyFirstFormulation ; Type FemEquation ;

Quantity {
{ Name u; Type Local; NameOfSpace H1_0; }

}
Equation {

Integral { [-a[] * Dof{d u}, {d u}];
In Omega; Integration I; Jacobian J; }

Integral { [-f[], {u}]; In Omega; Integration I; Jacobian J; }
}

}
}

62

GetDP - Main features
• H1, H(curl), H(div) and L2 bases in 1D, 2D and 3D; first and second order

for all element types; higher order for some
• Natural handling of non-local (global) quantities
• Circuit coupling
• Static, transient, harmonic, multi-harmonic resolutions
• Linear and nonlinear eigenvalue problems
• Easy coupling of fields and formulations, staggered or monolithic, e.g. for

explicit Jacobian matrices of strongly coupled nonlinear problems
• Linear algebra through PETSc/SLEPc
• Built-in Python and Octave interpreters
• Flexible templating mechanism, allowing one to build a library of generic

formulations

63

GetDP - Ten objects

Group

Function

Constraint

FunctionSpace

Jacobian

Integration

Formulation Resolution

PostOperation

PostProcessing

On top, over the blue background, the “user” objects that are sufficient to
parameterize a problem once it has been templated

64

GetDP - Group

• Link with the (physical groups) in a mesh
• Functions on groups: nodes, edges, tree of edges, ...

Group{
Air = Region [1]; // link with physical group 1 in the mesh
Core = Region [2];
Gamma = Region [{3, 4}];

Omega = Region [{Air , Core }]; // combining groups

nodes = NodesOf [Omega]; // nodes of the elements in Omega
edgesOfSpanningTree = EdgesOfTreeIn [Omega , StartingOn Gamma];

}

65

GetDP - Function

• Piecewise definitions
• Space-time dependent
• Physical characteristics, sources, constraints, ...

Function {
// constants
f = 50; mu0 = 4.e-7 * Pi;

// piecewise functions
mu[Air] = mu0;
mu[Core] = mu0 + 1/(100 + 100 * ($1)ˆ6); // argument ($1)

// using a runtime variable
TimeFct [] = Cos [2* Pi*f*$Time] * Exp[-$Time];

}

66

GetDP - FunctionSpace
• Basis functions (associated with nodes, edges, faces, ...) of various orders
• Coupling of fields and potentials
• Definition of global quantities (fluxes, circulations, ...)
• Essential constraints (boundary and gauge conditions, ...)

FunctionSpace {
{ Name H1; Type Form0; // discrete function space for H1_h

BasisFunction {
{ Name wi; NameOfCoef fi; Function BF_Node ; // P1 finite elements

Support Omega; Entity NodesOf [All]; }
}
Constraint {

{ NameOfCoef fi; EntityType NodesOf ; NameOfConstraint Dirichlet ; }
}

}
}

67

// second - order version , using hierarchical functions
FunctionSpace {

{ Name H1; Type Form0;
BasisFunction {

{ Name wi; NameOfCoef fi; Function BF_Node ; // order 1
Support Omega; Entity NodesOf [All]; }

{ Name wi2; NameOfCoef fi2; Function BF_Node_2E ; // order 2
Support Omega; Entity EdgesOf [All]; }

}
Constraint {

{ NameOfCoef fi; EntityType NodesOf ; NameOfConstraint Dirichlet ; }
{ NameOfCoef fi2; EntityType EdgesOf ; NameOfConstraint Dirichlet2 ; }

}
}

}

68

Exact sequence of the de Rham Complex

H1
h(Ω) gradh //Hh(curl; Ω) curlh //Hh(div; Ω) divh // L2(Ω)

preserved at the discrete level using Whitney elements. E.g. for Hh(curl; Ω):

FunctionSpace {
{ Name Hcurl_h ; Type Form1; // discrete Hcurl_h

BasisFunction {
{ Name se; NameOfCoef he; Function BF_Edge ;

Support Omega; Entity EdgesOf [All]; }
}
Constraint {

{ NameOfCoef he; EntityType EdgesOf ; NameOfConstraint Dirichlet ; }
}

}
}

h =
∑

e∈E(Ω)
hese h ∈ W 1(Ω)

69

Coupled Field-Potential

h =
∑

e∈E(Ωc)
hese +

∑
n∈N (Ω−Ωc)

φnvn h ∈ W 1(Ω)

FunctionSpace {
{ Name Hcurl_hphi ; Type Form1 ;

BasisFunction {
{ Name se; NameOfCoef he; Function BF_Edge ;

Support OmegaC ; Entity EdgesOf [All , Not SkinOmegaC]; }
{ Name vn; NameOfCoef phin; Function BF_GradNode ;

Support OmegaCC ; Entity NodesOf [All]; }
{ Name vn; NameOfCoef phic; Function BF_GroupOfEdges ;

Support OmegaC ; Entity GroupsOfEdgesOnNodesOf [SkinOmegaC];}
}
Constraint {

{ NameOfCoef he; EntityType EdgesOf ; NameOfConstraint h; }
{ NameOfCoef phin; EntityType NodesOf ; NameOfConstraint phi; }
{ NameOfCoef phic; EntityType NodesOf ; NameOfConstraint phi; }

}
}

}

70

Topologically Non-Trivial Domains

FunctionSpace {
{ Name Hcurl_hphi ; Type Form1;

BasisFunction {
... // same as above
{ Name sc; NameOfCoef Ic; Function BF_GradGroupOfNodes ;

Support ElementsOf [DomainCC , OnOneSideOf SurfaceCut];
Entity GroupsOfNodesOf [SurfaceCut]; }

{ Name sc; NameOfCoef Icc; Function BF_GroupOfEdges ;
Support DomainC ; Entity GroupsOfEdgesOf [SurfaceCut ,

InSupport ElementsOf [SkinDomainC , OnOneSideOf SurfaceCut]]; }
}
GlobalQuantity {

{ Name I; Type AliasOf ; NameOfCoef Ic; }
{ Name U; Type AssociatedWith ; NameOfCoef Ic; }

}
Constraint {

... // same as above
{ NameOfCoef Ic; EntityType GroupsOfNodesOf ; NameOfConstraint I; }
{ NameOfCoef Icc; EntityType GroupsOfNodesOf ; NameOfConstraint I; }
{ NameOfCoef U; EntityType GroupsOfNodesOf ; NameOfConstraint V; }

}
}

71

Global Quantities

v =
∑

n∈Nv

vnsn + vf

 ∑
n∈Nf

sn

 =
∑

n∈Nv

vnsn + vfsf

FunctionSpace {
{ Name Hgrad_v_floating ; Type Form0;

BasisFunction {
{ Name sn; NameOfCoef vn; Function BF_Node ;

Support Domain ; Entity NodesOf [All , Not SkinDomainC]; }
{ Name sf; NameOfCoef vf; Function BF_GroupOfNodes ;

Support Domain ; Entity GroupsOfNodesOf [SkinDomainC]; }
}
GlobalQuantity {

{ Name GlobalElectricPotential ; Type AliasOf ; NameOfCoef vf; }
{ Name GlobalElectricCharge ; Type AssociatedWith ; NameOfCoef vf; }

}
}

}

72

GetDP - Constraint

• Boundary conditions (Dirichlet, periodic)
• Initial conditions
• Topology of circuits with lumped elements
• Other constraints on local and global quantities

Constraint {
{ Name Dirichlet ; Type Assign ; // boundary conditions

Case {
{ Region Surface0 ; Value 0; }
{ Region Surface1 ; Value 1; }

}
}

}

73

Network constraints and circuit coupling

Constraint {
{ Name ElectricalCircuit ; Type Network ;

Case Circuit {
{ Region E1; Branch {1, 2}; }
{ Region R1; Branch {1, 3}; }
{ Region L1; Branch {3, 2}; }
{ Region C1; Branch {1, 2}; }

}
}

}

2
L1

E1

R1

1
3

C1

74

GetDP - Formulation

• Equation builder, with symbolic expression of weak forms
• Involves local, global and integral quantities based on function spaces

Formulation {
{ Name Maxwell_e ; Type FemEquation ;

Quantity {
{ Name e; Type Local; NameOfSpace Hcurl_h ; }

}
Equation {

Integral { [1/mu[] * Dof{Curl e}, {Curl e}];
In Omega; Jacobian Jac1; Integration Int1; }

Integral { DtDt [epsilon [] * Dof{e}, {e}];
In Omega; Jacobian Jac1; Integration Int1; }

}
}

}
Find e ∈Hh(curl; Ω) such that

(µ−1curl e, curl e′) + ∂2
t (εe, e′) = 0, ∀e′ ∈Hh(curl; Ω)

75

Formulation { // handle complexity with loops , etc.
{ Name OSRC; Type FemEquation ;

Quantity {
{ Name psi; Type Local; NameOfSpace Hdiv_psi ; }
{ Name w; Type Local; NameOfSpace Hdiv_w ; }
For j In {1:N}

{ Name phi ˜{j}; Type Local; NameOfSpace Hdiv_phi ˜{j}; }
EndFor
{ Name nxh; Type Local; NameOfSpace Hdiv_nxh ; }

}
Equation {

Integral { [Z0 * OSRC_C0 []{N, th} * Dof{nxh}, {nxh}];
In Gama; Jacobian JSur; Integration I1; }

Integral { [-{psi}, {nxh}];
In Gama; Jacobian JSur; Integration I1; }

For j In {1:N}
Integral { [Z0 * OSRC_Aj []{j, N, th} * Dof{phi ˜{j}}, {nxh}];

In Gama; Jacobian JSur; Integration I1; }
Integral { [Dof{phi ˜{j}}, {phi ˜{j}}];

In Gama; Jacobian JSur; Integration I1; }
Integral { [-OSRC_Bj []{j, N, th} / keps []ˆ2 * Dof{d phi ˜{j}}, {d phi ˜{j}}];

In Gama; Jacobian JSur; Integration I1; }
Integral { [1 / keps []ˆ2 * Dof{d nxh}, {d phi ˜{j}}];

In Gama; Jacobian JSur; Integration I1; }
EndFor

}
}

}

GetDP - Jacobian

• Mapping from reference to real space
• Geometrical transformations (axisymmetry, infinite domains, ...)

Jacobian {
{ Name Jac1;

Case { // piecewise defined on groups
{ Region OmegaInf ; Jacobian VolSphShell {Rint , Rext }; }
{ Region OmegaAxi ; Jacobian VolAxi ; }
{ Region All; Jacobian Vol; }

}
}

}

77

GetDP - Integration

• Various numeric and analytic integration methods
• Criterion-based selection

Integration {
{ Name Int1; Criterion Test [];

Case {
{ Type Gauss;

Case {
{ GeoElement Triangle ; NumberOfPoints 3; }
{ GeoElement Tetrahedron ; NumberOfPoints 3; }

}
}
{ Type Analytic ; }

}
}

}

78

GetDP - Resolution
• Description of the sequence of operations to solve the problem
• Time stepping, nonlinear iterations, ...
• Coupled problems (e.g. magneto-thermal coupling)
• Link various resolution steps (e.g. pre-computation of source fields)

Resolution {
{ Name Parabolic ;

System {
{ Name A; NameOfFormulation Parabolic ; }

}
Operation {

InitSolution [A];
TimeLoopTheta [tmin , tmax , dt , 1]{

Generate [A]; Solve[A]; If[Save []]{ SaveSolution [A]; }
}

}
}

79

GetDP - PostProcessing
• “Front-end” to computational data
• Piecewise definition of any post-processing quantity of interest
• Local or integral evaluation

PostProcessing {
{ Name magfields ; NameOfFormulation Dynamic ;

Quantity {
{ Name b;

Value {
Local { [-mu[] * {Grad phi}]; In OmegaCC ; }
Local { [mu[] * {h}]; In OmegaC ; }

}
}

}
}

80

GetDP - PostOperation

• Evaluation of post-processing quantities (e.g. maps, sections, local or global
evaluation, ...)

• Various output formats (e.g. space or time oriented, text, binary, ...)
• Output to disk or to memory as ONELAB parameters or Gmsh

post-processing views

PostOperation {
{ Name Map_b; NameOfPostProcessing magfields ;

Operation {
Print[b, OnElementsOf Omega , File "b.pos", Format Gmsh];
Print[b, OnLine {{0, 0, 0} {1, 0, 0}} {100} , File "b.txt"];

}
}

}

81

GetDP - Recent developments

• Optimized Schwarz domain decomposition methods
• Vector energy-based hysteresis models
• Sensitivity calculations for shape and topology optimization
• Computational homogenization
• 3D moving band with symmetries
• Nonlinear eigenvalue problems

82

GetDP - Optimized Schwarz DDM

3.4. Numerical results 113

S S

S

N

(a)

S S

S

S

(b)

S S

S

N

(c)

S S

S

S

(d)

Figure 3.18: Solutions at ! = 100º: (a) marmousi model with Neumann condition on
top; (b) marmousi model with absorbing condition on top; (c) homogeneous model
(c(x, y) = 3500) with Neumann condition on top; (d) homogeneous model with Sommer-
feld condition on top. The reflections produced by the Neumann condition are clearly
visible.

Massively parallel, distributed (MPI) optimized Schwarz domain decomposition
methods for high-frequency wave scattering

[B. Thierry et al., CPC 2016]
83

GetDP - Energy-based hysteresis models

[K. Jacques et al., 2018]
84

GetDP - Sensitivities and optimization

Design sensitivity analysis for combined topology and shape optimization, based
on the Lie derivative

[E. Kuci et al., SMO 2019]
85

GetDP - Computational homogenization

Massively parallel (MPI) Heterogeneous Multi-scale Method (HMM) for 3D
lamination stacks

[I. Niyonzima et al, 2021]
86

GetDP - 3D moving band

Auto-similar trees for efficient and accurate 3D sliding surfaces

87

GetDP - Nonlinear eigenvalue problems

General polynomial and rational eigenvalue problems for the analysis of
frequency-dispersive photonic open structures

[G. Demésy et al, CPC 2020]
88

Tying it all together with ONELAB

89

ONELAB - Context

• Economic
• Growing importance of numerical simulation in education and industry
• Prohibitive cost of commercial packages for a significant subset of potential

users (SMEs, education, occasional use)
• Scientific

• High quality of free/open-source software developed in universities and
research centers

• Sometimes ahead of commercial equivalents
• Practical

• No user-friendly interface and/or sparse documentation (e.g. missing
complete examples) for many (most?) open source Finite Element Analysis
(FEA) codes

90

ONELAB - Objective

Develop an interface for integrating FEA software:
• allowing to share parameters between any code
• with an intuitive GUI allowing new users to get started and guided into the

world of FE modeling—but with the possibility to construct sophisticated,
upgradable, multi-code, multi-platform scripts for the specialized user

• and with the possibility to construct application-specific tools for both
education and industry

91

ONELAB - Design

• Don’t reimplement, interface the existing
• Make it as small, lightweight and as easy to maintain as possible (no

solver-dependent code in the interface)
• Make it easy to provide templates, with interactive parameter modification
• ONELAB role = data centralization, modification and redispatching
• Issues of completeness and consistency of the parameter set are completely

dealt with on the client (e.g. FEA software) side

92

ONELAB - Design

• Client-server:
• Clients: CAD kernels, meshers, solvers, post-processors
• Server: Gmsh + database

• Abstract interface:
• The server has no a priori knowledge of the clients (no meta-language or

exchange file format)
• The client communicates with the server to define what information should

be exchanged
• Information is exchanged either directly in-memory, or through TCP/IP or

Unix sockets

93

ONELAB - Sharing parameters
Sharing parameter through ONELAB in .geo and .pro files is as simple as:

DefineConstant [N = { 50, Name "Input/ Number of steps"}];

In Python one can use the onelab.py module:
c = onelab . client ()
N = c. defineNumber (’Input / Number of steps ’, value =50)

Or one can directly use the Gmsh API, with JSON encoded data:
gmsh. onelab .set("""[

{
"type ":" number ",
"name ":" Input / Number of steps ",
" values ":[50]

}
]""")
N = gmsh. onelab . getNumber (’Input / Number of steps ’)

94

ONELAB - Tutorial
The best way to get started is the ONELAB tutorial:
• Examples of increasing complexity using both Gmsh and GetDP
• Used for teaching the “Modeling and design of electromagnetic systems”

class at ULiège since 2018

95

https://gitlab.onelab.info/doc/models/-/wikis/home

ONELAB - Laplace example

Open tutorials/Electrostatics/microstrip.pro with Gmsh

96

https://gitlab.onelab.info/doc/tutorials/-/wikis/Electrostatics

ONELAB - Multiphysics example

Open models/Magmetomater/magnetometer.pro with Gmsh

97

https://gitlab.onelab.info/doc/models/-/wikis/Magnetometer

ONELAB - Going further

• In addition to the tutorial, various models are available on
https://gitlab.onelab.info/doc/models

• Shape and topology optimization examples are also available on
https://gitlab.onelab.info/conveks/tutorials

• ONELAB has proved to be very useful in building application-specific codes
for industry
• Transformer design (Gmsh+GetDP+LTSpice), filter design (Gmsh+GetDP),

busbar design (Gmsh+GetDP), behavior of structures subjected to fire
(Gmsh+Safir), thermal laser skin treatment (Gmsh+GetDP+Elmer),
building resistance (Gmsh+Code Aster), ...

• Using the Gmsh API allows one to create dedicated graphical user interfaces,
with advanced interactivity for the selection of boundary conditions,
specification of material properties, etc.

98

https://gitlab.onelab.info/doc/models
https://gitlab.onelab.info/conveks/tutorials

Conclusions and perspectives

99

Conclusions and perspectives
• Overview of Gmsh, GetDP and ONELAB

• Modelling freedom (but some coding is necessary)
• Accessibility, reproducibility and interoperability (free and open source)
• Easy installation (binary distribution)
• Encapsulated and scriptable
• Successfully used both in academia and in industry
• More “Swiss Army knife” than “bazooka”
• Some open source alternatives: deal.II, dune-fem, FEMM, FEniCS,

FreeFEM, NGSolve, Elmer, MFEM, ...
• Many exciting developments in the pipeline:

• Meshing: improved curved mesh generation, hex-dominant meshes,
boundary layers, ...

• Solver: next-generation assembler GmshFEM, domain decomposition
framework GmshDDM and full wave inversion code GmshFWI; GPU
acceleration, ...

100

Post-Scriptum

• To download the ONELAB software bundle, including Gmsh
and GetDP: https://onelab.info

• For fun, go to the
• Google Play Store (if you are on Android)
• Apple AppStore (if you are on iOS)

and download the ONELAB app: it contains a
full-featured version of Gmsh & GetDP
... so you can impress your friends by solving finite element
problems on your smartphone!

101

https://onelab.info
https://play.google.com/store/apps/details?id=org.geuz.onelab
https://itunes.apple.com/us/app/onelab/id845930897

Thanks for your attention

http://people.montefiore.ulg.ac.be/geuzaine

� cgeuzaine@uliege.be

102

http://people.montefiore.ulg.ac.be/geuzaine

	Some background
	An overview of Gmsh
	Introduction
	Geometry module
	Mesh module
	Solver module
	Post-processing module
	Recent developments

	An overview of GetDP
	Introduction
	The 10 GetDP objects
	Recent developments

	Tying it all together with ONELAB
	Conclusions and perspectives

