[Gmsh] question about volume with holes

hubrys at virgilio.it hubrys at virgilio.it
Fri Apr 25 20:03:00 CEST 2008


Hi!
I want to know if v[], that is defined in the algorith that 
follows, is a volume with holes. Besides I want know if the top 
surfaces of the holes are bounded.

Function structure

  a1=newp; Point
(a1) = {a,0,0,lc1};
  a2=newp; Point(a2) = {a-r,0,0,lc1};
  a3=newp; 
Point(a3) = {a-h,0,0,lc1};
  a4=newp; Point(a4) = {a-r,r,0,lc1};
  
a5=newp; Point(a5) = {a-r,-r,0,lc1};

  b1=newp; Point(b1) = {0,b ,0,
lc1};
  b2=newp; Point(b2) = {0,b-r ,0,lc1};
  b3=newp; Point(b3) = {0,
b-h ,0,lc1};
  b4=newp; Point(b4) = {r,b-r ,0,lc1};
  b5=newp; Point
(b5) = {-r,b-r ,0,lc1};

  c1=newreg; Circle(c1) = {a1, a2, a4}; arc[i] 
= c1; i++;
  c2=newreg; Circle(c2) = {a4, a2, a3}; arc[i] = c2; i++;
  
c3=newreg; Circle(c3) = {a3, a2, a5}; arc[i] = c3; i++;
  c4=newreg; 
Circle(c4) = {a5, a2, a1}; arc[i] = c4; i++;
  c5=newreg; Circle(c5) = 
{b1, b2, b4}; arc[i] = c5; i++;
  c6=newreg; Circle(c6) = {b4, b2, b3}; 
arc[i] = c6; i++;
  c7=newreg; Circle(c7) = {b3, b2, b5}; arc[i] = c7; 
i++;
  c8=newreg; Circle(c8) = {b5, b2, b1}; arc[i] = c8; i++;

Return




 lc=8; lc1 = 1; a=27; b=a; R=50; 
 r=1; h=2*r; sx=a; dx=-a; z=50; 
z1=80; 

Point(11) = {0,0,0,lc};
Point(21) = {-R,0,0,lc};
Point(31) = 
{R,0,0,lc};
Point(41) = {0,-R,0,lc};
Point(51) = {0,R,0,lc};

Circle
(11) = {21,11,51};
Circle(21) = {51,11,31};
Circle(31) = {31,11,41};
Circle(41) = {41,11,21};



i = 0;

For a In {sx:1:-3}

  Call 
structure;
  b-=3;

EndFor

b=-1;

For a In {-1:dx:-3}

  Call 
structure;
  b-=3;

EndFor

f1=newp; Point(f1) = {0,0,z,lc};
f2=newp; 
Point(f2) = {-R,0,z,lc};
f3=newp; Point(f3) = {R,0,z,lc};
f4=newp; Point
(f4) = {0,-R,z,lc};
f5=newp; Point(f5) = {0,R,z,lc};

k1=newreg;  Circle
(k1) = {f2,f1,f5};
k2=newreg;  Circle(k2) = {f5,f1,f3};
k3=newreg;  
Circle(k3) = {f3,f1,f4};
k4=newreg;  Circle(k4) = {f4,f1,f2};


s1 = 
newreg; Line Loop(s1) = {arc[],11,21,31,41};
s2 = newreg; Plane Surface
(s2) = {s1};          

s3 = newreg; Line Loop(s3) = {k1,k2,k3,k4};
s4 
= newreg; Plane Surface(s4) = {s3};     



t[] = Extrude {0, 0, z}
{Surface{s2}; Layers{20}; Recombine; };
t1[] = Extrude {0, 0, z1}
{Surface{s4}; Layers{20}; Recombine; };


 
v[]={t[],t1[]};

Physical 
Volume(1)={v[]};
 

Thanks!

----Messaggio originale----
Da: David.
Colignon at ulg.ac.be
Data: 15-apr-2008 16.37
A: "hubrys at virgilio.it"
<hubrys at virgilio.it>
Cc: <gmsh at geuz.org>
Ogg: Re: [Gmsh] question about 
volume with holes

Hi,

t[] cannot be a hole into t1 because they have 
surfaces in common ...

Cheers,

Dave


-- 
David Colignon, Ph.D.
Collaborateur Logistique F.R.S.-FNRS (Equipements de Calcul Intensif)
ACE - Applied & Computational Electromagnetics
Institut Montefiore B28
Université de Liège
4000 Liège - BELGIQUE
Tél: +32 (0)4 366 37 32
Fax: 
+32 (0)4 366 29 10
WWW:    http://www.montefiore.ulg.ac.be/personnel.
php?op=detail&id=898
Agenda: http://www.google.com/calendar/embed?
src=david.colignon%40gmail.com



hubrys at virgilio.it wrote:
> hi!
> I'm 
not able to obtain a volume with holes using t[] and t1[] 
> 
extrusions. I mean, t[] has to makes a hole into t1[].
> Here follows 
my 
> project:
> 
> 
> 
> Function structur
> 
>   a1=newp; Point(a1) = 
{a,0,0,lc1};
>   
> a2=newp; Point(a2) = {a-r,0,0,lc1};
>   a3=newp; 
Point(a3) = {a-h,0,0,
> lc1};
>   a4=newp; Point(a4) = {a-r,r,0,lc1};
>   a5=newp; Point(a5) = {a-r,
> -r,0,lc1};
> 
>   b1=newp; Point(b1) = 
{0,b ,0,lc1};
>   b2=newp; Point(b2) = 
> {0,b-r ,0,lc1};
>   b3=newp; 
Point(b3) = {0,b-h ,0,lc1};
>   b4=newp; Point
> (b4) = {r,b-r ,0,lc1};
>   b5=newp; Point(b5) = {-r,b-r ,0,lc1};
> 
>   
> c1=newreg; Circle
(c1) = {a1, a2, a4}; arc[i] = c1; i++;
>   c2=newreg; 
> Circle(c2) = 
{a4, a2, a3}; arc[i] = c2; i++;
>   c3=newreg; Circle(c3) = 
> {a3, a2, 
a5}; arc[i] = c3; i++;
>   c4=newreg; Circle(c4) = {a5, a2, a1}; 
> arc
[i] = c4; i++;
>   c5=newreg; Circle(c5) = {b1, b2, b4}; arc[i] = c5; 
> i++;
>   c6=newreg; Circle(c6) = {b4, b2, b3}; arc[i] = c6; i++;
>   
> c7=newreg; Circle(c7) = {b3, b2, b5}; arc[i] = c7; i++;
>   
c8=newreg; 
> Circle(c8) = {b5, b2, b1}; arc[i] = c8; i++;
> 
> Return
> 
> 
> 
> 
> 
>  lc=8; lc1 = 
> 1; a=27; b=a; R=50; 
>  r=1; h=2*r; 
sx=a; dx=-a; z=50; z1=80; 
> 
> 
> Point
> (11) = {0,0,0,lc};
> Point
(21) = {-R,0,0,lc};
> Point(31) = {R,0,0,lc};
> Point(41) = {0,-R,0,
lc};
> Point(51) = {0,R,0,lc};
> 
> Circle(11) = 
> {21,11,51};
> Circle
(21) = {51,11,31};
> Circle(31) = {31,11,41};
> Circle
> (41) = 
{41,11,21};
> 
> 
> 
> i = 0;
> 
> For a In {sx:1:-3}
> 
>   Call 
structur;
>   b-
> =3;
> 
> EndFor
> 
> b=-1;
> 
> For a In {-1:dx:-3}
> 
>   Call structur;
>   b-=3;
> 
> EndFor
> 
> 
>  
> 
> s1 = newreg; 
Line Loop(s1) = {arc[]};
> s2 = newreg; Plane 
> Surface(s2) = 
{s1};           
> 
> s3 = newreg; Line Loop(s3) = 
> {11,21,31,41};
> 
s4 = newreg; Plane Surface(s4) = {s3};
> 
> 
> t[] = Extrude 
> {0,0,z}
{Surface{s2};Layers{20}; Recombine;};
> t1[] = Extrude {0,0,z1}
> 
{Surface{s4};Layers{20}; Recombine;};
> 
> 
> 
> Thanks for the help!
> 
> _______________________________________________
> gmsh mailing 
list
> gmsh at geuz.org
> http://www.geuz.org/mailman/listinfo/gmsh