[Gmsh] question about volume with holes
hubrys at virgilio.it
hubrys at virgilio.it
Fri Apr 25 20:03:00 CEST 2008
Hi!
I want to know if v[], that is defined in the algorith that
follows, is a volume with holes. Besides I want know if the top
surfaces of the holes are bounded.
Function structure
a1=newp; Point
(a1) = {a,0,0,lc1};
a2=newp; Point(a2) = {a-r,0,0,lc1};
a3=newp;
Point(a3) = {a-h,0,0,lc1};
a4=newp; Point(a4) = {a-r,r,0,lc1};
a5=newp; Point(a5) = {a-r,-r,0,lc1};
b1=newp; Point(b1) = {0,b ,0,
lc1};
b2=newp; Point(b2) = {0,b-r ,0,lc1};
b3=newp; Point(b3) = {0,
b-h ,0,lc1};
b4=newp; Point(b4) = {r,b-r ,0,lc1};
b5=newp; Point
(b5) = {-r,b-r ,0,lc1};
c1=newreg; Circle(c1) = {a1, a2, a4}; arc[i]
= c1; i++;
c2=newreg; Circle(c2) = {a4, a2, a3}; arc[i] = c2; i++;
c3=newreg; Circle(c3) = {a3, a2, a5}; arc[i] = c3; i++;
c4=newreg;
Circle(c4) = {a5, a2, a1}; arc[i] = c4; i++;
c5=newreg; Circle(c5) =
{b1, b2, b4}; arc[i] = c5; i++;
c6=newreg; Circle(c6) = {b4, b2, b3};
arc[i] = c6; i++;
c7=newreg; Circle(c7) = {b3, b2, b5}; arc[i] = c7;
i++;
c8=newreg; Circle(c8) = {b5, b2, b1}; arc[i] = c8; i++;
Return
lc=8; lc1 = 1; a=27; b=a; R=50;
r=1; h=2*r; sx=a; dx=-a; z=50;
z1=80;
Point(11) = {0,0,0,lc};
Point(21) = {-R,0,0,lc};
Point(31) =
{R,0,0,lc};
Point(41) = {0,-R,0,lc};
Point(51) = {0,R,0,lc};
Circle
(11) = {21,11,51};
Circle(21) = {51,11,31};
Circle(31) = {31,11,41};
Circle(41) = {41,11,21};
i = 0;
For a In {sx:1:-3}
Call
structure;
b-=3;
EndFor
b=-1;
For a In {-1:dx:-3}
Call
structure;
b-=3;
EndFor
f1=newp; Point(f1) = {0,0,z,lc};
f2=newp;
Point(f2) = {-R,0,z,lc};
f3=newp; Point(f3) = {R,0,z,lc};
f4=newp; Point
(f4) = {0,-R,z,lc};
f5=newp; Point(f5) = {0,R,z,lc};
k1=newreg; Circle
(k1) = {f2,f1,f5};
k2=newreg; Circle(k2) = {f5,f1,f3};
k3=newreg;
Circle(k3) = {f3,f1,f4};
k4=newreg; Circle(k4) = {f4,f1,f2};
s1 =
newreg; Line Loop(s1) = {arc[],11,21,31,41};
s2 = newreg; Plane Surface
(s2) = {s1};
s3 = newreg; Line Loop(s3) = {k1,k2,k3,k4};
s4
= newreg; Plane Surface(s4) = {s3};
t[] = Extrude {0, 0, z}
{Surface{s2}; Layers{20}; Recombine; };
t1[] = Extrude {0, 0, z1}
{Surface{s4}; Layers{20}; Recombine; };
v[]={t[],t1[]};
Physical
Volume(1)={v[]};
Thanks!
----Messaggio originale----
Da: David.
Colignon at ulg.ac.be
Data: 15-apr-2008 16.37
A: "hubrys at virgilio.it"
<hubrys at virgilio.it>
Cc: <gmsh at geuz.org>
Ogg: Re: [Gmsh] question about
volume with holes
Hi,
t[] cannot be a hole into t1 because they have
surfaces in common ...
Cheers,
Dave
--
David Colignon, Ph.D.
Collaborateur Logistique F.R.S.-FNRS (Equipements de Calcul Intensif)
ACE - Applied & Computational Electromagnetics
Institut Montefiore B28
Université de Liège
4000 Liège - BELGIQUE
Tél: +32 (0)4 366 37 32
Fax:
+32 (0)4 366 29 10
WWW: http://www.montefiore.ulg.ac.be/personnel.
php?op=detail&id=898
Agenda: http://www.google.com/calendar/embed?
src=david.colignon%40gmail.com
hubrys at virgilio.it wrote:
> hi!
> I'm
not able to obtain a volume with holes using t[] and t1[]
>
extrusions. I mean, t[] has to makes a hole into t1[].
> Here follows
my
> project:
>
>
>
> Function structur
>
> a1=newp; Point(a1) =
{a,0,0,lc1};
>
> a2=newp; Point(a2) = {a-r,0,0,lc1};
> a3=newp;
Point(a3) = {a-h,0,0,
> lc1};
> a4=newp; Point(a4) = {a-r,r,0,lc1};
> a5=newp; Point(a5) = {a-r,
> -r,0,lc1};
>
> b1=newp; Point(b1) =
{0,b ,0,lc1};
> b2=newp; Point(b2) =
> {0,b-r ,0,lc1};
> b3=newp;
Point(b3) = {0,b-h ,0,lc1};
> b4=newp; Point
> (b4) = {r,b-r ,0,lc1};
> b5=newp; Point(b5) = {-r,b-r ,0,lc1};
>
>
> c1=newreg; Circle
(c1) = {a1, a2, a4}; arc[i] = c1; i++;
> c2=newreg;
> Circle(c2) =
{a4, a2, a3}; arc[i] = c2; i++;
> c3=newreg; Circle(c3) =
> {a3, a2,
a5}; arc[i] = c3; i++;
> c4=newreg; Circle(c4) = {a5, a2, a1};
> arc
[i] = c4; i++;
> c5=newreg; Circle(c5) = {b1, b2, b4}; arc[i] = c5;
> i++;
> c6=newreg; Circle(c6) = {b4, b2, b3}; arc[i] = c6; i++;
>
> c7=newreg; Circle(c7) = {b3, b2, b5}; arc[i] = c7; i++;
>
c8=newreg;
> Circle(c8) = {b5, b2, b1}; arc[i] = c8; i++;
>
> Return
>
>
>
>
>
> lc=8; lc1 =
> 1; a=27; b=a; R=50;
> r=1; h=2*r;
sx=a; dx=-a; z=50; z1=80;
>
>
> Point
> (11) = {0,0,0,lc};
> Point
(21) = {-R,0,0,lc};
> Point(31) = {R,0,0,lc};
> Point(41) = {0,-R,0,
lc};
> Point(51) = {0,R,0,lc};
>
> Circle(11) =
> {21,11,51};
> Circle
(21) = {51,11,31};
> Circle(31) = {31,11,41};
> Circle
> (41) =
{41,11,21};
>
>
>
> i = 0;
>
> For a In {sx:1:-3}
>
> Call
structur;
> b-
> =3;
>
> EndFor
>
> b=-1;
>
> For a In {-1:dx:-3}
>
> Call structur;
> b-=3;
>
> EndFor
>
>
>
>
> s1 = newreg;
Line Loop(s1) = {arc[]};
> s2 = newreg; Plane
> Surface(s2) =
{s1};
>
> s3 = newreg; Line Loop(s3) =
> {11,21,31,41};
>
s4 = newreg; Plane Surface(s4) = {s3};
>
>
> t[] = Extrude
> {0,0,z}
{Surface{s2};Layers{20}; Recombine;};
> t1[] = Extrude {0,0,z1}
>
{Surface{s4};Layers{20}; Recombine;};
>
>
>
> Thanks for the help!
>
> _______________________________________________
> gmsh mailing
list
> gmsh at geuz.org
> http://www.geuz.org/mailman/listinfo/gmsh