[Gmsh] Generating mixed element mesh

Kópházi József j.kophazi at imperial.ac.uk
Tue Jun 11 14:15:08 CEST 2013


Dear list members,

I'm trying to produce a 3D mesh consisting two regions: a region with 
unstructured tetrahedral mesh and an attached region with structured 
hexahedral mesh. Obviously, the unstrucutred part needs to include some 
pyramid elements to facilitate the connection. By using google I 
realized that the stable release doesn't support this, but according to 
Christophe Geuzaine answer for an earlier question 
(https://groups.google.com/forum/?fromgroups#!topic/gmsh-public/mUYykAaFGp4) 
that the svn version contains an experimental support for this. However, 
using this, I receive the following error message for every face 
elements interconnecting the two domains:

Error   : Cannot build pyramids on non manifold faces

In order to trace up the problem, I decided to build an extremely 
simplified model containing two boxes (attached file), but this yields 
the same error messages and I can not find the error in the geometry.

What am I doing wrong?

Thank you for your help in advance,

Jozsef



-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.geuz.org/pipermail/gmsh/attachments/20130611/4eb407aa/attachment.html>
-------------- next part --------------
den=0.2;

Point( 1) = {  0.0,   0.0,   0.0, den};
Point( 2) = {  1.0,   0.0,   0.0, den};
Point( 3) = {  0.0,   1.0,   0.0, den};
Point( 4) = {  1.0,   1.0,   0.0, den};

Point( 5) = {  0.0,   0.0,   0.5, den};
Point( 6) = {  1.0,   0.0,   0.5, den};
Point( 7) = {  0.0,   1.0,   0.5, den};
Point( 8) = {  1.0,   1.0,   0.5, den};

Point( 9) = {  0.0,   0.0,   1.0, den};
Point(10) = {  1.0,   0.0,   1.0, den};
Point(11) = {  0.0,   1.0,   1.0, den};
Point(12) = {  1.0,   1.0,   1.0, den};
Line(1) = {4, 3};
Line(2) = {3, 1};
Line(3) = {1, 2};
Line(4) = {2, 4};
Line(5) = {8, 7};
Line(6) = {7, 5};
Line(7) = {5, 6};
Line(8) = {6, 8};
Line(9) = {12, 11};
Line(10) = {11, 9};
Line(11) = {9, 10};
Line(12) = {10, 12};
Line(13) = {12, 8};
Line(14) = {8, 4};
Line(15) = {3, 7};
Line(16) = {7, 11};
Line(17) = {1, 5};
Line(18) = {5, 9};
Line(19) = {10, 6};
Line(20) = {6, 2};
Line Loop(21) = {4, 1, 2, 3};
Plane Surface(22) = {21};
Line Loop(23) = {8, 5, 6, 7};
Plane Surface(24) = {23};
Line Loop(25) = {9, 10, 11, 12};
Plane Surface(26) = {25};
Line Loop(27) = {14, -4, -20, 8};
Plane Surface(28) = {27};
Line Loop(29) = {13, -8, -19, 12};
Plane Surface(30) = {29};
Line Loop(31) = {15, 6, -17, -2};
Plane Surface(32) = {31};
Line Loop(33) = {16, 10, -18, -6};
Plane Surface(34) = {33};
Line Loop(35) = {1, 15, -5, 14};
Plane Surface(36) = {35};
Line Loop(37) = {13, 5, 16, -9};
Plane Surface(38) = {37};
Line Loop(39) = {20, -3, 17, 7};
Plane Surface(40) = {39};
Line Loop(41) = {19, -7, 18, 11};
Plane Surface(42) = {41};
Surface Loop(43) = {36, 22, 28, 40, 32, 24};
Volume(44) = {43};
Surface Loop(45) = {38, 30, 42, 34, 26, 24};
Volume(46) = {45};


Transfinite Line { 1} = 1/den Using Progression 1.;
Transfinite Line { 2} = 1/den Using Progression 1.;
Transfinite Line { 3} = 1/den Using Progression 1.;
Transfinite Line { 4} = 1/den Using Progression 1.;
Transfinite Line { 5} = 1/den Using Progression 1.;
Transfinite Line { 6} = 1/den Using Progression 1.;
Transfinite Line { 7} = 1/den Using Progression 1.;
Transfinite Line { 8} = 1/den Using Progression 1.;
Transfinite Line {14} = 1/den Using Progression 1.;
Transfinite Line {15} = 1/den Using Progression 1.;
Transfinite Line {17} = 1/den Using Progression 1.;
Transfinite Line {20} = 1/den Using Progression 1.;

Transfinite Surface {22} ;
Transfinite Surface {24} ;
Transfinite Surface {28} ;
Transfinite Surface {32} ;
Transfinite Surface {36} ;
Transfinite Surface {40} ;


Recombine Surface {22};
Recombine Surface {24};
Recombine Surface {28};
Recombine Surface {32};
Recombine Surface {36};
Recombine Surface {40};


Transfinite Volume {44} ;