[Gmsh] Problem creating surface

Maik Hoffmann maik.hoffmann at b-tu.de
Wed May 20 10:26:16 CEST 2015


Hello,
I need a mesh for BEM analysis. I created the part with with FreeCad 
(cad.png) and imported the step-file into Gmsh. That works fine. Some 
surfaces were already created. Now I tried to create the surface for the 
small tube, but I got only the surface of the opening of the tube not 
for the wall (mesh.png).

What have I to do for it. I choose 'Add/Ruled Surface' and selected the 
nurbs and the line between them.

Thanks
Maik

-- 
wissenschaftlicher Mitarbeiter
Lehrstuhl Allgemeine Elektrotechnik und Messtechnik (AEMT)
Fakultät Maschinenbau, Elektrotechnik und Wirtschaftsingenieurwesen
Brandenburgische Technische Universität Cottbus
Siemens-Halske-Ring 14
D-03046 Cottbus

Tel.: +49-355-69-3425
Fax:  +49-355-69-4104

http://www.tu-cottbus.de/fakultaet3/de/elektrotechnik-messtechnik/
-------------- next part --------------
A non-text attachment was scrubbed...
Name: mesh.png
Type: image/png
Size: 134275 bytes
Desc: not available
URL: <http://www.geuz.org/pipermail/gmsh/attachments/20150520/99f69a0d/attachment.png>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: cad.png
Type: image/png
Size: 35270 bytes
Desc: not available
URL: <http://www.geuz.org/pipermail/gmsh/attachments/20150520/99f69a0d/attachment-0001.png>
-------------- next part --------------
cl__1 = 1e+22;
Point(1) = {-88.38834764831, 88.388347648318, 0, 1e+22};
Point(3) = {88.388347648318, 88.388347648319, 0, 1e+22};
Point(5) = {-88.38834764831, 88.388347648318, 100, 1e+22};
Point(10) = {88.388347648318, 88.388347648319, 100, 1e+22};
Point(11) = {8, 124.74373731775, 61.680495667243, 1e+22};
Point(12) = {-8, 124.74373731775, 61.680495667243, 1e+22};
Point(14) = {8, 143, 93.301270189222, 1e+22};
Point(16) = {0, 0, 0, 1e+22};
Point(18) = {0, 0, 0, 1e+22};
Point(20) = {0, 0, 100, 1e+22};
Point(62) = {0, 0, 100, 1e+22};
Point(64) = {7.925357428713036, 124.748501833195, 59.50818883364833, 1e+22};
Point(65) = {7.70521502469509, 124.762292626507, 57.40930480116813, 1e+22};
Point(66) = {7.349676798099916, 124.7837419336452, 55.43084560516085, 1e+22};
Point(67) = {6.867752290350055, 124.8111933220673, 53.59148656841585, 1e+22};
Point(68) = {6.261319186249959, 124.8430850389985, 51.89347822730892, 1e+22};
Point(69) = {5.52140201050316, 124.8779969404752, 50.33476396885501, 1e+22};
Point(70) = {4.623023749879821, 124.9144813513818, 48.91826206301204, 1e+22};
Point(71) = {3.513105523244268, 124.9506226072067, 47.66411899769526, 1e+22};
Point(72) = {2.08085295150175, 124.9826790059588, 46.64507639580783, 1e+22};
Point(73) = {0.1413491797738282, 124.9999200902661, 46.12671440738686, 1e+22};
Point(74) = {-1.865610910595995, 124.9860772047446, 46.54138526925928, 1e+22};
Point(75) = {-3.369942150060547, 124.9545657056034, 47.53449433332773, 1e+22};
Point(76) = {-4.523651387287235, 124.9181194946409, 48.78608370963272, 1e+22};
Point(77) = {-5.4517240356788, 124.8810582316601, 50.20873870658853, 1e+22};
Point(78) = {-6.213497298159849, 124.8454742925384, 51.77852465253388, 1e+22};
Point(79) = {-6.836750277680149, 124.8128953499367, 53.49152752442696, 1e+22};
Point(80) = {-7.331726256629617, 124.7847979126824, 55.34980552097745, 1e+22};
Point(81) = {-7.696954140816244, 124.7628025373292, 57.35145530694133, 1e+22};
Point(82) = {-7.923235976335435, 124.7486365923405, 59.47779923047396, 1e+22};
Point(84) = {7.920200693841216, 124.7488293370676, 63.9435743543335, 1e+22};
Point(85) = {7.68975797166412, 124.7632462800482, 66.12682392610313, 1e+22};
Point(86) = {7.325052636804291, 124.7851898418481, 68.18458827256771, 1e+22};
Point(87) = {6.8382703998879, 124.8128120744825, 70.10388471056865, 1e+22};
Point(88) = {6.232348420748081, 124.8445346547565, 71.88659874284021, 1e+22};
Point(89) = {5.498507832229921, 124.8790070894259, 73.53656445752625, 1e+22};
Point(90) = {4.611699542344755, 124.914899940795, 75.0509363401875, 1e+22};
Point(91) = {3.518346837355948, 124.9504751326173, 76.40816003028884, 1e+22};
Point(92) = {2.104196895239275, 124.9822881682876, 77.5303038645559, 1e+22};
Point(93) = {0.1622653992316418, 124.999894689784, 78.12088220152846, 1e+22};
Point(94) = {-1.861119924114283, 124.9861441587436, 77.66136328214914, 1e+22};
Point(95) = {-3.357883282249098, 124.9548903436859, 76.56856769396919, 1e+22};
Point(96) = {-4.500350832515459, 124.9189611004711, 75.21227132654178, 1e+22};
Point(97) = {-5.420190181583944, 124.8824308635735, 73.68873393868668, 1e+22};
Point(98) = {-6.17828518086235, 124.8472218041671, 72.02414301716691, 1e+22};
Point(99) = {-6.802908410960882, 124.8147444700336, 70.2226135760464, 1e+22};
Point(100) = {-7.304307452646379, 124.7864058807709, 68.28037639009133, 1e+22};
Point(101) = {-7.680033186984436, 124.7638452847784, 66.19509611832504, 1e+22};
Point(102) = {-7.917644362747145, 124.748991610114, 63.97949397159221, 1e+22};
Point(124) = {7.608452130361228, 145.1409325386383, 92.06520221172174, 1e+22};
Point(125) = {6.47213595499958, 147.0722956836405, 90.95012918005121, 1e+22};
Point(126) = {4.702282018339785, 148.6050341537756, 90.06520221172097, 1e+22};
Point(127) = {2.47213595499958, 149.5891128283698, 89.49704412403993, 1e+22};
Point(128) = {4.898425415289509e-16, 149.9282032302746, 89.30127018922047, 1e+22};
Point(129) = {-2.472135954999579, 149.5891128283698, 89.49704412403993, 1e+22};
Point(130) = {-4.702282018339784, 148.6050341537756, 90.06520221172097, 1e+22};
Point(131) = {-6.472135954999579, 147.0722956836405, 90.95012918005121, 1e+22};
Point(132) = {-7.608452130361228, 145.1409325386383, 92.06520221172174, 1e+22};
Point(133) = {-8, 143, 93.301270189222, 1e+22};
Point(134) = {-7.608452130361228, 140.8590674613617, 94.53733816672225, 1e+22};
Point(135) = {-6.47213595499958, 138.9277043163595, 95.65241119839278, 1e+22};
Point(136) = {-4.702282018339786, 137.3949658462244, 96.53733816672302, 1e+22};
Point(137) = {-2.47213595499958, 136.4108871716302, 97.10549625440406, 1e+22};
Point(138) = {-1.469527624586853e-15, 136.0717967697254, 97.30127018922352, 1e+22};
Point(139) = {2.472135954999578, 136.4108871716302, 97.10549625440406, 1e+22};
Point(140) = {4.702282018339783, 137.3949658462244, 96.53733816672302, 1e+22};
Point(141) = {6.472135954999579, 138.9277043163595, 95.65241119839278, 1e+22};
Point(142) = {7.608452130361228, 140.8590674613617, 94.53733816672225, 1e+22};
Circle(2) = {3, 16, 1};
Transfinite Line {2} = 100Using Progression 1;
Line(6) = {1, 5};
Transfinite Line {6} = 100Using Progression 1;
Line(12) = {3, 10};
Transfinite Line {12} = 100Using Progression 1;
Circle(14) = {10, 62, 5};
Transfinite Line {14} = 100Using Progression 1;
Spline(15) = {11, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 12};
Transfinite Line {15} = 30Using Progression 1;
Spline(16) = {11, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 12};
Transfinite Line {16} = 30Using Progression 1;
Line(19) = {11, 14};
Transfinite Line {19} = 100Using Progression 1;
Spline(20) = {14, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 14};
Transfinite Line {20} = 100Using Progression 1;
Line Loop(38) = {14, -6, -2, 12, 15, -16};