[Gmsh] Extrude for unstructured mesh

Stephan Gekle stephan.gekle at uni-bayreuth.de
Mon Feb 29 07:13:08 CET 2016


Dear all,

I have created a script which meshes an axisymmetric surface by 
extrusion (see attachment). Then the mesh contains both the outer 
surface of revolution as well as the four inner auxiliary surfaces which 
were used/created by the extrusion.
In the final mesh, I would like to have only the outer surface of 
revolution. I have tried to either delete the inner surfaces or to 
select only the outer surfaces as "Physical Surfaces". Both attempts 
have failed.
Would someone have a hint how to go about that?

Thanks a lot in advance!

    Stephan

-------------- next part --------------
lc=0.1;
Point(1)= { -0.363769, 0, 0.000000, lc };
Point(2)= { -0.372282, 0, 0.000347, lc };
Point(3)= { -0.366063, 0, 0.001903, lc };
Point(4)= { -0.358512, 0, 0.012368, lc };
Point(5)= { -0.361630, 0, 0.040117, lc };
Point(6)= { -0.382192, 0, 0.099151, lc };
Point(7)= { -0.413583, 0, 0.190535, lc };
Point(8)= { -0.457919, 0, 0.276735, lc };
Point(9)= { -0.520847, 0, 0.344581, lc };
Point(10)= { -0.592004, 0, 0.404138, lc };
Point(11)= { -0.668530, 0, 0.456678, lc };
Point(12)= { -0.749646, 0, 0.502004, lc };
Point(13)= { -0.833237, 0, 0.543322, lc };
Point(14)= { -0.916731, 0, 0.585335, lc };
Point(15)= { -0.998341, 0, 0.632370, lc };
Point(16)= { -1.074138, 0, 0.688046, lc };
Point(17)= { -1.135919, 0, 0.753496, lc };
Point(18)= { -1.176293, 0, 0.826822, lc };
Point(19)= { -1.192298, 0, 0.899787, lc };
Point(20)= { -1.188693, 0, 0.959041, lc };
Point(21)= { -1.179592, 0, 0.990054, lc };
Point(22)= { -1.171496, 0, 1.006566, lc };
Point(23)= { -1.159829, 0, 1.027600, lc };
Point(24)= { -1.132162, 0, 1.057126, lc };
Point(25)= { -1.077095, 0, 1.093749, lc };
Point(26)= { -0.996896, 0, 1.118461, lc };
Point(27)= { -0.903304, 0, 1.118699, lc };
Point(28)= { -0.809503, 0, 1.102365, lc };
Point(29)= { -0.719003, 0, 1.076782, lc };
Point(30)= { -0.629869, 0, 1.046177, lc };
Point(31)= { -0.541203, 0, 1.013549, lc };
Point(32)= { -0.452476, 0, 0.981201, lc };
Point(33)= { -0.363487, 0, 0.949780, lc };
Point(34)= { -0.274407, 0, 0.918501, lc };
Point(35)= { -0.185421, 0, 0.886806, lc };
Point(36)= { -0.096610, 0, 0.855027, lc };
Point(37)= { -0.007689, 0, 0.823374, lc };
Point(38)= { 0.080845, 0, 0.790515, lc };
Point(39)= { 0.168109, 0, 0.754897, lc };
Point(40)= { 0.253548, 0, 0.715559, lc };
Point(41)= { 0.336838, 0, 0.671868, lc };
Point(42)= { 0.417175, 0, 0.622977, lc };
Point(43)= { 0.493121, 0, 0.568180, lc };
Point(44)= { 0.563628, 0, 0.506561, lc };
Point(45)= { 0.628092, 0, 0.435975, lc };
Point(46)= { 0.683229, 0, 0.356751, lc };
Point(47)= { 0.723301, 0, 0.275900, lc };
Point(48)= { 0.751007, 0, 0.193525, lc };
Point(49)= { 0.779545, 0, 0.081914, lc };
Point(50)= { 0.783479, 0, 0.000000, lc };
Spline(1)={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26};
Spline(2)={26, 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 };
Line(3)={50,1};
Line Loop(1) = {1,2,3};
Plane Surface(2) = {1};
l[] = Extrude { {1,0,0}, {0,0,0}, Pi/2}  { Surface{2}; Layers{20}; };
s[] = Extrude { {1,0,0}, {0,0,0}, Pi/2}  { Surface{l[0]}; Layers{20}; };
p[] = Extrude { {1,0,0}, {0,0,0}, Pi/2}  { Surface{s[0]}; Layers{20}; };
q[] = Extrude { {1,0,0}, {0,0,0}, Pi/2}  { Surface{p[0]}; Layers{20}; };
Mesh 2;


More information about the gmsh mailing list