GetDP

Revision as of 18:22, 23 January 2013 by Geuzaine (talk | contribs) (Heat transfer)

Revision as of 18:22, 23 January 2013 by Geuzaine (talk | contribs) (Heat transfer)

GetDP is a rather general open source finite element solver using mixed elements to discretize de Rham-type complexes in one, two and three dimensions. GetDP is developed by the ACE group from the Montefiore Institute at the University of Liège, and is released under the GNU GPL.

Contents

Getting started

ONELAB allows to use GetDP as a black-box solver: you don't need to know anything about finite elements or de Rham complexes in order to run your first simulations:

  1. Download the latest nightly builds of Gmsh (for Windows, MacOS X or Linux) and GetDP (for Windows 32 bit/64 bit, MacOS X or Linux 32 bit/64 bit) and uncompress the 2 archives (no installation necessary; you can move them to any directory).
  2. Double-click on the Gmsh executable (gmsh.exe
    Error creating thumbnail: Unable to save thumbnail to destination
    on Windows).
  3. Load one of the GetDP models (.pro file) through the File/Open menu, e.g. magnet.pro for the Template:GetDPFile example below. Note that the first time you run a GetDP model you will be prompted to specify the location of the GetDP executable, e.g. getdp.exe on Windows; the location depends on where you uncompressed the archives in step 1.
  4. Click on Run.
  5. ... that's it!

Give it a try on the Template:GetDPFile example (the underlying model is explained in more details in the Magnetostatics section):

Electromagnetics Examples

  • Electrostatics
    • Capacitor, microstrip line, high-voltage isolator
  • Electrokinetics
    • Steady currents in conductors
  • Magnetostatics
    • Linear C-shaped magnetic core, Non-linear core
  • Magnetodynamics
    • Eddy currents in a plate, switched reluctance motor, synchronous and asynchronous machine, induction heating
  • Wave propagation
    • Waveguide, parabolic reflector, dipole antenna, microstrip antenna, optical fiber, invisibility cloak, plasmonics

Acoustics Examples

Heat Transfer Examples

Generic PDEs