Difference between revisions of "GetDP"

From ONELAB
Jump to: navigation, search
Line 130: Line 130:
 
** [[Wave equation with Dirichlet boundary control]]
 
** [[Wave equation with Dirichlet boundary control]]
 
->
 
->
 +
 +
== Building GetDP from the source code ==
 +
 +
If you want to recompile GetDP directly from the source code, you should
 +
 +
* Download PETSc from http://www.mcs.anl.gov/petsc/petsc-as/download/
 +
 +
* Uncompress the PETSc archive (in this example, using PETSc 3.7.4):
 +
<source>
 +
tar zxvf petsc-3.7.4.tar.gz
 +
</source>
 +
 +
* Configure and build PETSc. The configuration options depend on the calculations you want to perform (complex- or real-valued), as well as your compiler setup. For a sequential build (without MPI), run (remove <code>--with-scalar-type=complex</code> to build in real arithmetic):
 +
<source>
 +
cd petsc-3.7.4
 +
export PETSC_DIR=$PWD
 +
export PETSC_ARCH=complex_mumps_seq
 +
./configure --with-debugging=0 --with-clanguage=cxx --with-shared-libraries=0 --with-x=0  --download-mumps=1 --download-metis=1 --download-parmetis=1 --download-scalapack=1 --download-blacs=1 --with-scalar-type=complex
 +
make
 +
cd ..
 +
</source>
 +
 +
* Download and unzip the Gmsh and the GetDP source code from the ONELAB bundle  http://onelab.info/files/gmsh-getdp-source.zip
 +
 +
* Configure, compile and install a minimal Gmsh library (it will be used by GetDP):
 +
<source>
 +
cd gmsh-xxx
 +
mkdir lib
 +
cd lib
 +
cmake -DDEFAULT=0 -DENABLE_PARSER=1 -DENABLE_POST=1 -DENABLE_BUILD_LIB=1 ..
 +
make lib
 +
sudo make install/fast
 +
cd ../..
 +
</source>
 +
 +
* Configure and compile GetDP:
 +
<source>
 +
cd getdp-xxx
 +
mkdir bin
 +
cd bin
 +
cmake ..
 +
make
 +
cd ../..
 +
</source>

Revision as of 12:19, 7 December 2016

GetDP is an open source finite element solver using mixed elements to discretize de Rham-type complexes in one, two and three dimensions. GetDP is developed by the ACE group from the Montefiore Institute at the University of Liège, and is released under the GNU GPL.

Getting started

ONELAB allows to use GetDP as a black-box solver: you don't need to know anything about finite elements or de Rham complexes in order to run your first simulations:

  1. Download the ONELAB bundle:
  2. Launch the app
  3. Open a GetDP model:
    • Desktop version: go to the File/Open menu and select a GetDP .pro file, e.g. models/magnetometer/magnetometer.pro
    • Mobile version: select one of the preloaded models
  4. Press Run.


GetDP models

Basic templates

These are basic physical templates, that can either be used interactively to define new problems from scratch, or be included in other problem definition files.

Featured physical models

These are complete, parametric application examples, ready to be solved and modified.

Acoustics Electromagnetism Heat transfer Multi-physics

Advanced numerical techniques


All models

All GetDP models

How does it work?

GetDP input files (.pro files) can be instrumented to share parameters with the ONELAB server, through the same syntax as the one used in Gmsh.