[Gmsh] nodes inconsistency between 2D and 3D meshing

David Colignon David.Colignon at ulg.ac.be
Wed Jan 25 17:04:01 CET 2012


Hi Valentina,

I don't know if it will solve your problem, but you should delete the line:

Plane Surface(75) = {59};

which defines a second time  Plane Surface(60) = {59};

If not, on which surface do you see 2D nodes not part of the 3D Mesh ?

Regards,

Dave


-- 
David Colignon, Ph.D.
Collaborateur Logistique du F.R.S.-FNRS
CÉCI - Consortium des Équipements de Calcul Intensif
ACE - Applied & Computational Electromagnetics
Sart-Tilman B28
Université de Liège
4000 Liège - BELGIQUE
Tél: +32 (0)4 366 37 32
Fax: +32 (0)4 366 29 10
WWW:    http://www.ceci-hpc.be/
Agenda: http://www.google.com/calendar/embed?src=david.colignon%40gmail.com


On 25/01/12 16:40, valentina carapella wrote:
> Hi all,
>
> I am trying to produce a tetrahedral mesh of half of a  thick-walled prolate spheroid. To do this, I've first generated
> the geometry by adapting an example I found in the gmsh wiki. My script is included below. Then I run the 3D meshing
> algorithm based on MeshAdapt for 2D and Delaunay for 3D.
> The problem I encounter is that a few nodes that are used to generate the triangular faces are then not used to generate
> any of the tetrahedral elements. Is there a way to avoid this? It's fundamental for the later use of the mesh within
> another tool that all the nodes defining triangular faces are part of one of the tetrahedra of the 3D mesh.
>
> Thanks
>
> Valentina
>
>
> Thick-Walled Prolate Spheroid Script
>
> lc = 0.09; //this value changes the resolution of the mesh
> lz_o = 1; // outer long axis
> lx_o = 0.5; // outer radius
> wt=0.15;
> lx_i=lx_o-wt; //inner radius
> lz_i=lz_o-wt; //inner long axis
>
> Point(1) = {0,0,0,lc};
> Point(2) = {lx_o,0,0,lc};
> Point(3) = {0,0,-lz_o,lc};
> Point(4) = {lx_i,0,0,lc};
> Point(5) = {0,0,-lz_i,lc};
> Ellipse(1) = {2,1,3,3};
> Ellipse(2) = {4,1,5,5};
>
> //OUTER ELLIPSOID
>
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{1};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{3};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{6};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{9};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{12};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{15};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{18};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{21};
> }
>
> //INNER ELLIPSOID
>
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{2};
> }
>
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{27};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{30};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{33};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{36};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{39};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{42};
> }
> Extrude {{0,0,1}, {0,0,0}, Pi/4} {
>    Line{45};
> }
>
> //Upper lines connecting inner and outer half spheroid and the related surfaces
>
>
> Line(51) = {16, 9};
> Line(52) = {15, 8};
> Line(53) = {14, 7};
> Line(54) = {13, 6};
> Line(55) = {4, 2};
> Line(56) = {19, 12};
> Line(57) = {18, 11};
> Line(58) = {17, 10};
> Line Loop(59) = {40, 58, -16, -51};
> Plane Surface(60) = {59};
> Line Loop(61) = {51, -13, -52, 37};
> Plane Surface(62) = {61};
> Line Loop(63) = {52, -10, -53, 34};
> Plane Surface(64) = {63};
> Line Loop(65) = {53, -7, -54, 31};
> Plane Surface(66) = {65};
> Line Loop(67) = {54, -4, -55, 28};
> Plane Surface(68) = {67};
> Line Loop(69) = {55, -25, -56, 49};
> Plane Surface(70) = {69};
> Line Loop(71) = {56, -22, -57, 46};
> Plane Surface(72) = {71};
> Line Loop(73) = {57, -19, -58, 43};
> Plane Surface(74) = {73};
> Plane Surface(75) = {59};
> Surface Loop(76) = {14, 17, 20, 23, 26, 5, 8, 11, 64, 62, 38, 41, 44, 47, 50, 29, 32, 35, 66, 68, 70, 72, 74, 60};
> Volume(77) = {76};
>
>
>
> _______________________________________________
> gmsh mailing list
> gmsh at geuz.org
> http://www.geuz.org/mailman/listinfo/gmsh