[Gmsh] Fwd: STEP to .geo conversion problem

Štěpán Roučka stepan.roucka at gmail.com
Thu Dec 17 22:46:32 CET 2015


Dear all,

please, ignore my previous message, I sent it unintentionally...
I have a problem converting my STEP geometry to .geo for use in gmsh. Steps
to reproduce:
 - create a cylinder in FreeCAD and save it as a cylinder.step file
 - load cylinder.step in gmsh, save it as cylinder.geo
 - load cylinder.geo in gmsh - creating mesh fails with:
Info    : Meshing 2D...
Info    : Meshing surface 1 (Ruled surface, MeshAdapt)
Error   : Unable to recover an edge 1.68237 -1.0812 && 2 -4.89859e-16
(10/10)

I should note that the following (without saving to .geo) works
 - load cylinder.step in gmsh and create mesh - OK
but I would like to define the physical entities via GUI and I need geo
file to save them (if I understand correctly).

Please, can you advise me how to owercome this problem? I am quite new to
gmsh, so I may be missing something obvious...

remarks:
if I use .brep or .iges instead of .step, it fails with the same message.
If I replace the cylinder with a cube, there is no problem.

Thanks in advance,
Stepan Roucka

The contents of the .geo file are below

cl__1 = 1e+22;
Point(1) = {2, -4.898587196589001e-16, 10, cl__1};
Point(2) = {2, -4.898587196589001e-16, 0, cl__1};
p1 = newp;
Point(p1 + 1) = {1.902113032590307, 0.6180339887498948, 10};
Point(p1 + 2) = {1.618033988749895, 1.175570504584946, 10};
Point(p1 + 3) = {1.175570504584946, 1.618033988749895, 10};
Point(p1 + 4) = {0.6180339887498949, 1.902113032590307, 10};
Point(p1 + 5) = {1.224646799147353e-16, 2, 10};
Point(p1 + 6) = {-0.6180339887498947, 1.902113032590307, 10};
Point(p1 + 7) = {-1.175570504584946, 1.618033988749895, 10};
Point(p1 + 8) = {-1.618033988749895, 1.175570504584946, 10};
Point(p1 + 9) = {-1.902113032590307, 0.618033988749895, 10};
Point(p1 + 10) = {-2, 2.449293598294706e-16, 10};
Point(p1 + 11) = {-1.902113032590307, -0.6180339887498955, 10};
Point(p1 + 12) = {-1.618033988749895, -1.175570504584946, 10};
Point(p1 + 13) = {-1.175570504584946, -1.618033988749895, 10};
Point(p1 + 14) = {-0.6180339887498951, -1.902113032590307, 10};
Point(p1 + 15) = {-3.673940397442059e-16, -2, 10};
Point(p1 + 16) = {0.6180339887498945, -1.902113032590307, 10};
Point(p1 + 17) = {1.175570504584946, -1.618033988749895, 10};
Point(p1 + 18) = {1.618033988749895, -1.175570504584947, 10};
Point(p1 + 19) = {1.902113032590307, -0.6180339887498952, 10};
Spline(1) = {1, p1 + 1, p1 + 2, p1 + 3, p1 + 4, p1 + 5, p1 + 6, p1 + 7, p1
+ 8, p1 + 9, p1 + 10, p1 + 11, p1 + 12, p1 + 13, p1 + 14, p1 + 15, p1 + 16,
p1 + 17, p1 + 18, p1 + 19, 1};
Line(2) = {2, 1};
p3 = newp;
Point(p3 + 1) = {1.902113032590307, 0.6180339887498948, 0};
Point(p3 + 2) = {1.618033988749895, 1.175570504584946, 0};
Point(p3 + 3) = {1.175570504584946, 1.618033988749895, 0};
Point(p3 + 4) = {0.6180339887498949, 1.902113032590307, 0};
Point(p3 + 5) = {1.224646799147353e-16, 2, 0};
Point(p3 + 6) = {-0.6180339887498947, 1.902113032590307, 0};
Point(p3 + 7) = {-1.175570504584946, 1.618033988749895, 0};
Point(p3 + 8) = {-1.618033988749895, 1.175570504584946, 0};
Point(p3 + 9) = {-1.902113032590307, 0.618033988749895, 0};
Point(p3 + 10) = {-2, 2.449293598294706e-16, 0};
Point(p3 + 11) = {-1.902113032590307, -0.6180339887498955, 0};
Point(p3 + 12) = {-1.618033988749895, -1.175570504584946, 0};
Point(p3 + 13) = {-1.175570504584946, -1.618033988749895, 0};
Point(p3 + 14) = {-0.6180339887498951, -1.902113032590307, 0};
Point(p3 + 15) = {-3.673940397442059e-16, -2, 0};
Point(p3 + 16) = {0.6180339887498945, -1.902113032590307, 0};
Point(p3 + 17) = {1.175570504584946, -1.618033988749895, 0};
Point(p3 + 18) = {1.618033988749895, -1.175570504584947, 0};
Point(p3 + 19) = {1.902113032590307, -0.6180339887498952, 0};
Spline(3) = {2, p3 + 1, p3 + 2, p3 + 3, p3 + 4, p3 + 5, p3 + 6, p3 + 7, p3
+ 8, p3 + 9, p3 + 10, p3 + 11, p3 + 12, p3 + 13, p3 + 14, p3 + 15, p3 + 16,
p3 + 17, p3 + 18, p3 + 19, 2};
Line Loop(1) = {1, -2, 3, 2};
Ruled Surface(1) = {1};
Line Loop(2) = {1};
Plane Surface(2) = {2};
Line Loop(3) = {3};
Plane Surface(3) = {3};
Surface Loop(1) = {1, 2, 3};
Volume(1) = {1};
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.geuz.org/pipermail/gmsh/attachments/20151217/82c0bc8d/attachment.html>